首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for allelic replacement in Francisella tularensis   总被引:10,自引:0,他引:10  
A vector for mutagenesis of Francisella tularensis was constructed based on the pUC19 plasmid. By inserting the sacB gene of Bacillus subtilis, oriT of plasmid RP4, and a chloramphenicol resistance gene of Shigella flexneri, a vector, pPV, was obtained that allowed specific mutagenesis. A protocol was developed that allowed introduction of the vector into the live vaccine strain, LVS, of F. tularensis by conjugation. As a proof of principle, we aimed to develop a specific mutant defective in expression of a 23-kDa protein (iglC) that we previously have shown to be prominently upregulated during intracellular growth of F. tularensis. A plasmid designated pPV-DeltaiglC was developed that contained only the regions flanking the encoding gene, iglC. By a double crossover event, the chromosomal iglC gene was deleted. However, the resulting strain, denoted DeltaiglC1, still had an intact iglC gene. Southern blot analysis verified that LVS harbors two copies for the iglC gene. The mutagenesis was therefore repeated and a mutant defective in both iglC alleles, designated DeltaiglC1+2, was obtained. The DeltaiglC1+2 strain, in contrast to DeltaiglC1, was shown to display impaired intracellular macrophage growth and to be attenuated for virulence in mice. The developed genetic system has the potential to provide a tool to elucidate virulence mechanisms of F. tularensis and the specific F. tularensis mutant illustrates the critical role of the 23-kDa protein, iglC, for the virulence of F. tularensis LVS.  相似文献   

2.
The Francisella tularensis subsp. novicida-containing phagosome (FCP) matures into a late endosome-like stage that acquires the late endosomal marker LAMP-2 but does not fuse to lysosomes, for the first few hours after bacterial entry. This modulation in phagosome biogenesis is followed by disruption of the phagosome and bacterial escape into the cytoplasm where they replicate. Here we examined the role of the Francisella pathogenicity island (FPI) protein IglC and its regulator MglA in the intracellular fate of F. tularensis subsp. novicida within human macrophages. We show that F. tularensis mglA and iglC mutant strains are defective for survival and replication within U937 macrophages and human monocyte-derived macrophages (hMDMs). The defect in intracellular replication of both mutants is associated with a defect in disruption of the phagosome and failure to escape into the cytoplasm. Approximately, 80-90% of the mglA and iglC mutants containing phagosomes acquire the late endosomal/lysosomal marker LAMP-2 similar to the wild-type (WT) strain. Phagosomes harbouring the mglA or iglC mutants acquire the lysosomal enzyme Cathepsin D, which is excluded from the phagosomes harbouring the WT strain. In hMDMs in which the lysosomes are preloaded with BSA-gold or Texas Red Ovalbumin, phagosomes harbouring the mglA or the iglC mutants acquire both lysosomal tracers. We conclude that the FPI protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Therefore, acquisition of the FPI, within which iglC is contained, is essential for the pathogenic evolution of F. tularensis to evade lysosomal fusion within human macrophages and cause tularemia. This is the first example of specific virulence factors of F. tularensis that are essential for evasion of fusion of the FCP to lysosomes.  相似文献   

3.
Studies of the molecular mechanisms of pathogenesis of Francisella tularensis, the causative agent of tularemia, have been hampered by a lack of genetic techniques for rapid targeted gene disruption in the most virulent subspecies. Here we describe efficient targeted gene disruption in F. tularensis utilizing mobile group II introns (targetrons) specifically optimized for F. tularensis. Utilizing a targetron targeted to blaB, which encodes ampicillin resistance, we showed that the system works at high efficiency in three different subspecies: F. tularensis subsp. tularensis, F. tularensis subsp. holarctica, and "F. tularensis subsp. novicida." A targetron was also utilized to inactivate F. tularensis subsp. holarctica iglC, a gene required for virulence. The iglC gene is located within the Francisella pathogenicity island (FPI), which has been duplicated in the most virulent subspecies. Importantly, the iglC targetron targeted both copies simultaneously, resulting in a strain mutated in both iglC genes in a single step. This system will help illuminate the contributions of specific genes, and especially those within the FPI, to the pathogenesis of this poorly studied organism.  相似文献   

4.
Francisella tularensis is a facultative intracellular pathogen that infects a wide variety of mammals and causes tularemia in humans. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of transmission. To date, genetic manipulation in Francisella spp. has been limited due to the inefficiency of DNA transformation, the relative lack of useful selective markers, and the lack of stably replicating plasmids. Therefore, the goal of this study was to develop an enhanced shuttle plasmid that could be utilized for a variety of genetic procedures in both Francisella and Escherichia coli. A hybrid plasmid, pFNLTP1, was isolated that was transformed by electroporation at frequencies of >1 x 10(7) CFU mug of DNA(-1) in F. tularensis LVS, Francisella novicida U112, and E. coli DH5alpha. Furthermore, this plasmid was stably maintained in F. tularensis LVS after passage in the absence of antibiotic selection in vitro and after 3 days of growth in J774A.1 macrophages. Importantly, F. tularensis LVS derivatives carrying pFNLTP1 were unaltered in their growth characteristics in laboratory medium and macrophages compared to wild-type LVS. We also constructed derivatives of pFNLTP1 containing expanded multiple cloning sites or temperature-sensitive mutations that failed to allow plasmid replication in F. tularensis LVS at the nonpermissive temperature. In addition, the utility of pFNLTP1 as a vehicle for gene expression, as well as complementation, was demonstrated. In summary, we describe construction of a Francisella shuttle plasmid that is transformed at high efficiency, is stably maintained, and does not alter the growth of Francisella in macrophages. This new tool should significantly enhance genetic manipulation and characterization of F. tularensis and other Francisella biotypes.  相似文献   

5.
Two alternative promoter trap libraries, based on the green fluorescence protein (gfp) reporter and on the chloramphenicol acetyltransferase (cat) cassette, were constructed for isolation of potent Francisella tularensis promoters. Of the 26,000 F. tularensis strain LVS gfp library clones, only 3 exhibited visible fluorescence following UV illumination and all appeared to carry the bacterioferritin promoter (Pbfr). Out of a total of 2,000 chloramphenicol-resistant LVS clones isolated from the cat promoter library, we arbitrarily selected 40 for further analysis. Over 80% of these clones carry unique F. tularensis DNA sequences which appear to drive a wide range of protein expression, as determined by specific chloramphenicol acetyltransferase (CAT) Western dot blot and enzymatic assays. The DNA sequence information for the 33 unique and novel F. tularensis promoters reported here, along with the results of in silico and primer extension analyses, suggest that F. tularensis possesses classical Escherichia coli σ(70)-related promoter motifs. These motifs include the -10 (TATAAT) and -35 [TTGA(C/T)A] domains and an AT-rich region upstream from -35, reminiscent of but distinct from the E. coli upstream region that is termed the UP element. The most efficient promoter identified (Pbfr) appears to be about 10 times more potent than the F. tularensis groEL promoter and is probably among the strongest promoters in F. tularensis. The battery of promoters identified in this work will be useful, among other things, for genetic manipulation in the background of F. tularensis intended to gain better understanding of the mechanisms involved in pathogenesis and virulence, as well as for vaccine development studies.  相似文献   

6.
Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes the fulminating disease tularemia and is considered to be a potential bioweapon. F. tularensis pathogenicity island proteins play a key role in modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm of macrophages. The 23 kDa pathogenicity island protein IglC is essential for the survival and proliferation of F. tularensis in macrophages. Seeking to gain some insight into its function, we determined the crystal structure of IglC at 1.65 A resolution. IglC adopts a beta-sandwich conformation that exhibits no similarity with any known protein structure.  相似文献   

7.
8.
9.
Francisella tularensis is a facultative intracellular pathogen. Its capacity to induce disease depends on the ability to invade and multiply within a wide range of eukaryotic cells, such as professional phagocytes. The comparative disinterest in tularemia in the past relative to other human bacterial pathogens is reflected in the paucity of information concerning the mechanisms of pathogenesis. Only a few genes and gene products associated with Francisella virulence are known to date. The aim of this study was to find and identify proteins of F. tularensis live vaccine strain induced in the presence of hydrogen peroxide, and to investigate the role of the IglC protein in the regulation of genes expressed upon peroxide stress. The [(35)S]-radiolabelled protein patterns were examined for both the wild live vaccine strain and its DeltaiglC1+2 mutant defective in synthesis of the IglC protein that was found to be strongly up-regulated during intracellular growth in murine macrophages in vitro and upon exposure to hydrogen peroxide. Globally, we found 21 protein spots whose levels were significantly altered in the presence of hydrogen peroxide in both the wild-type and mutant strains.  相似文献   

10.
We determined that LVS and Schu S4 strains of the human pathogen Francisella tularensis express a siderophore when grown under iron-limiting conditions. We purified this siderophore by conventional column chromatography and high-pressure liquid chromatography and used mass spectrometric analysis to demonstrate that it is structurally similar to the polycarboxylate siderophore rhizoferrin. The siderophore promoted the growth of LVS and Schu S4 strains in iron-limiting media. We identified a potential siderophore biosynthetic gene cluster encoded by fslABCD in the F. tularensis genome. The first gene in the cluster, fslA, encodes a member of the superfamily of nonribosomal peptide synthetase-independent siderophore synthetases (NIS synthetases) characterized by the aerobactin synthetases IucA and IucC. We determined that fslA is transcribed as part of an operon with downstream gene fslB and that the expression of the locus is induced by iron starvation. A targeted in-frame nonpolar deletion of fslA in LVS resulted in the loss of siderophore expression and in a reduced ability of F. tularensis to grow under conditions of iron limitation. Siderophore activity and the ability to grow under iron limitation could be regained by introducing the fslA(+) gene on a complementing plasmid. Our results suggest that the fslA-dependent siderophore is important for survival of F. tularensis in an iron-deficient environment.  相似文献   

11.
Francisella tularensis is a facultative intracellular pathogen and potential biothreat agent. Evasion of the immune response contributes to the extraordinary virulence of this organism although the mechanism is unclear. Whereas wild-type strains induced low levels of cytokines, an F. tularensis ripA deletion mutant (LVSΔripA) provoked significant release of IL-1β, IL-18, and TNF-α by resting macrophages. IL-1β and IL-18 secretion was dependent on inflammasome components pyrin-caspase recruitment domain/apoptotic speck-containing protein with a caspase recruitment domain and caspase-1, and the TLR/IL-1R signaling molecule MyD88 was required for inflammatory cytokine synthesis. Complementation of LVSΔripA with a plasmid encoding ripA restored immune evasion. Similar findings were observed in a human monocytic line. The presence of ripA nearly eliminated activation of MAPKs including ERK1/2, JNK, and p38, and pharmacologic inhibitors of these three MAPKs reduced cytokine induction by LVSΔripA. Animals infected with LVSΔripA mounted a stronger IL-1β and TNF-α response than that of mice infected with wild-type live vaccine strain. This analysis revealed novel immune evasive mechanisms of F. tularensis.  相似文献   

12.
Francisella tularensis is a highly virulent bacterium responsible for the zoonotic disease tularemia. It is a facultative intracellular pathogen that replicates in the cytoplasm of host cells, particularly in macrophages. Here we show that F. tularensis live vaccine strain (LVS) expresses a novel small RNA (sRNA), which modulates the virulence capacities of the bacterium. When this sRNA, designated FtrC (for Francisella tularensisRNA C), is expressed at high levels, F. tularensis replicates in macrophages less efficiently than the wild-type parent strain. Similarly, high expression of FtrC reduces the number of viable bacteria recovered from the spleen and liver of infected mice. Our data demonstrate that expression of gene FTL_1293 is regulated by FtrC. Furthermore, we show by in vitro gel shift assays that FtrC interacts specifically with FTL_1293 mRNA and that this happens independently of the RNA chaperone Hfq. Remarkably, FtrC interacts only with full-length FTL_1293 mRNA. These results, combined with a bioinformatic analysis, indicate that FtrC interacts with the central region of the mRNA and hence does not act by sterically hindering access of the ribosome to the mRNA. We further show that gene FTL_1293 is not required for F. tularensis virulence in vitro or in vivo, which indicates that another unidentified FtrC target modulates the virulence capacity of the bacterium.  相似文献   

13.
Francisella tularensis is a facultative intracellular bacterium that survives and multiplies inside macrophages. Here we constructed a new promoter probe plasmid denoted pKK214 by introduction of a promoter-less chloramphenicol acetyltransferase (cat) gene into the shuttle vector pKK202. A promoter library was created in F. tularensis strain LVS by cloning random chromosomal DNA fragments into pKK214. Approximately 15% of the recombinant bacteria showed chloramphenicol resistance in vitro. The promoter library was also used to infect macrophages in the presence of chloramphenicol and after two cycles of infection the library contained essentially only chloramphenicol resistance clones which shows that pKK214 can be used to monitor F. tularensis genes that are expressed during infection.  相似文献   

14.
Taurine: new implications for an old amino acid   总被引:2,自引:0,他引:2  
We describe here a technique for allelic exchange in Francisella tularensis subsp. novicida utilizing polymerase chain reaction (PCR) products. Linear PCR fragments containing gene deletions with an erythromycin resistance cassette insertion were transformed into F. tularensis. The subsequent ErmR progeny were found to have undergone allelic exchange at the correct location in the genome; the minimum flanking homology necessary was 500 bp. This technique was used to create mglA, iglC, bla, and tul4 mutants in F. tularensis subsp. novicida strains. The mglA and iglC mutants were defective for intramacrophage growth, and the tul4 mutant lacked detectable Tul4 by Western immunoblot, as expected. Interestingly, the bla mutant maintained resistance to ampicillin, indicating the presence of multiple ampicillin resistance genes in F. tularensis.  相似文献   

15.
The presence of Francisella-like endosymbionts in tick species known to transmit tularemia poses a potential diagnostic problem for laboratories that screen tick samples by PCR for Francisella tularensis. Tick samples initially considered positive for F. tularensis based on standard 16S rRNA gene PCR were found to be positive only for Francisella-like endosymbionts using a multitarget F. tularensis TaqMan assay (ISFtu2, tul4, and iglC) and 16S rRNA gene sequencing. Specificity of PCR-based diagnostics for F. tularensis should be carefully evaluated with appropriate specimen types prior to diagnostic use.  相似文献   

16.
We used the killing of Galleria mellonella (Lepidoptera: Pyralidae; the greater wax moth) caterpillar by the live vaccine strain (LVS) of Francisella tularensis to develop an invertebrate host system that can be used to study F. tularensis infection and the in vivo effects of antibacterial compounds on F. tularensis LVS. After injection into the insect hemocoel, F. tularensis LVS, killed caterpillars despite the association of LVS with hemocytes. The rate of killing depended on the number of bacteria injected. Antibiotic therapy with ciprofloxacin, levofloxacin or streptomycin administered before or after inoculation prolonged survival and decreased the tissue burden of F. tularensis in the hemocoel. Delayed drug treatment reduced the efficacy of antibacterials and especially streptomycin. The G. mellonella-F. tularensis LVS system may facilitate the in vivo study of F. tularensis, efficacy with antibacterial agents.  相似文献   

17.
Naturally acquired infections with Francisella tularensis, the bacterial agent of tularemia, occur infrequently in humans. However, the high infectivity and lethality of the organism in humans raise concerns that it might be exploited as a weapon of bioterrorism. Despite this potential for illicit use, the pathogenesis of tularemia is not well understood. To examine how F. tularensis interacts with cells of its mammalian hosts, we tested the ability of a live vaccine strain (LVS) to induce proinflammatory changes in cultured HUVEC. Living F. tularensis LVS induced HUVEC to express the adhesion molecules VCAM-1 and ICAM-1, but not E-selectin, and to secrete the chemokine CXCL8, but not CCL2. Stimulation of HUVEC by the living bacteria was partially suppressed by polymyxin B, an inhibitor of LPS, but did not require serum, suggesting that F. tularensis LVS does not stimulate endothelium through the serum-dependent pathway that is typically used by LPS from enteric bacteria. In contrast to the living organisms, suspensions of killed F. tularensis LVS acquired the ability to increase endothelial expression of both E-selectin and CCL2. Up-regulation of E-selectin and CCL2 by the killed bacteria was not inhibited by polymyxin B. Exposure of HUVEC to either live or killed F. tularensis LVS for 24 h promoted the transendothelial migration of subsequently added neutrophils. These data indicate that multiple components of F. tularensis LVS induce proinflammatory changes in endothelial cells in an atypical manner that may contribute to the exceptional infectivity and virulence of this pathogen.  相似文献   

18.
19.
Francisella tularensis is a highly virulent, facultative intracellular pathogen that causes tularemia in humans and animals. Although it is one of the most infectious bacterial pathogens, little is known about its virulence mechanisms. In this study, the response of F. tularensis live vaccine strain to iron depletion, which simulates the environment within the host, was investigated. In order to detect alterations in protein synthesis, metabolic labeling, followed by 2D-PAGE analysis was used. Globally, 141 protein spots were detected whose levels were significantly altered in the iron-restricted medium. About 65% of the spots were successfully identified using mass spectrometric approaches. Importantly, among the proteins produced at an increased level during iron-limited growth, three proteins were found encoded by the igl operon, located in the F. tularensis pathogenicity island I (FPI). Of these, the IglC and IglA proteins were previously reported to be necessary for full virulence of F. tularensis. These results, obtained at the proteome level, support and confirm recently published data showing that the igl operon genes are transcribed in response to iron limitation.  相似文献   

20.
Francisella tularensis is a highly infectious, facultative intracellular bacterial pathogen that is the causative agent of tularemia. Nearly a century ago, researchers observed that tularemia was often fatal in North America but almost never fatal in Europe and Asia. The chromosomes of F. tularensis strains carry two identical copies of the Francisella pathogenicity island (FPI), and the FPIs of North America-specific biotypes contain two genes, anmK and pdpD, that are not found in biotypes that are distributed over the entire Northern Hemisphere. In this work, we studied the contribution of anmK and pdpD to virulence by using F. novicida, which is very closely related to F. tularensis but which carries only one copy of the FPI. We showed that anmK and pdpD are necessary for full virulence but not for intracellular growth. This is in sharp contrast to most other FPI genes that have been studied to date, which are required for intracellular growth. We also showed that PdpD is localized to the outer membrane. Further, overexpression of PdpD affects the cellular distribution of FPI-encoded proteins IglA, IglB, and IglC. Finally, deletions of FPI genes encoding proteins that are homologues of known components of type VI secretion systems abolished the altered distribution of IglC and the outer membrane localization of PdpD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号