共查询到20条相似文献,搜索用时 15 毫秒
1.
Aromatase cytochrome P450 (P450arom) enzyme activity catalyses the conversion of androgens to estrogens in specific brain areas. During central nervous system (CNS) development local estrogen formation influences sexual differentiation of neural structures, regulates neuroendocrine functions and sexual behavior. A proposed mechanism (and re-examination) of the sexual differentiation of the rodent brain is presented. The metabolic pathway of androgen metabolism by P450arom was characterized in the medial basal hypothalamic (MBH) tissue from male rats during various prenatal and postnatal developmental intervals. The P450arom enzyme activity was determined using a saturating concentration of [3H]testosterone as the substrate, and the rates were quantified by scintillation counting. The MBH P450arom activity was highest during prenatal development (i.e. 3–6 pmol/h/mg protein), declined to moderate levels in newborns and infantile animals (approximately 1 pmol/h/mg protein) and then continued to decline to low activity rates in adult animals (approximately 80 fmol/h/mg protein). Regulation of the P450arom gene was characterized by a series of molecular biology studies where the controlling mechanism for brain P450arom was determined in MBH and amygdaloid tissue sites. Evidence for brain P450arom-specific mRNA in perinatal rats is presented as well as comparisons with rat ovary, a rat Leydig tumor cell line (R2C) and human fetal brain P450arom. Specifically, P450arom gene expression is driven in perinatal rat brain tissue by a different promoter compared to rat ovarian tissue or a R2C cell line, whereas human fetal brain tissue utilizes an almost identical promoter segment to that observed in the rodent. These findings provide an insight into the regulation of brain P450arom gene expression and suggest that there is an additional level of control for the expression of this gene during perinatal development. However, further study is necessary to understand the molecular basis of this complex developmental pattern of brain P450arom expression. 相似文献
2.
3.
Seralini GE Tomilin A Auvray P Nativelle-Serpentini C Sourdaine P Moslemi S 《Biochimica et biophysica acta》2003,1625(3):229-238
We characterized testicular equine aromatase and its expression. A 2707 bp cDNA was isolated, it encoded a polypeptide of 503 residues with a deduced molecular mass of 57.8 kDa. The sequence features were those of a cytochrome P450 aromatase, with a 78% polypeptide identity with the human counterpart. The gene has a minimal length of 74 kb comprising at least 9 exons and expresses a 2.8 kb mRNA in the testis. Transient cDNA transfections in E293 cells and in vitro translations in a reticulocyte lysate system allowed aromatase protein and activity detections. The activity increased with androstenedione as substrate in a dose-dependent manner. The isolation of testicular aromatase by a new immunoaffinity method demonstrated that the protein could exist either glycosylated or not with a 2 kDa difference. All these results taken together allow new structural studies to progress in the understanding of this cytochrome P450. 相似文献
4.
Aromatization of androgens into estrogens in rat testis is catalyzed by the microsomal enzyme cytochrome P450 aromatase. In this work, aromatase cellular site was investigated in prepuberal, peripuberal and postpuberal testis, from 10-, 21- and 60-day-old rats respectively. Paraffin-embedded testis sections were processed for P450arom immunostaining using a rabbit polyclonal antiserum generated against purified human placental cytochrome P450 aromatase. Next, biotinylated anti-rabbit IgG was applied, followed by ABC/HRP/complex amplification with diaminobenzidine as chromogen. Prepuberal testis sections showed a strong immunoreactivity of aromatase in Sertoli cell cytoplasm while interstitial cells were immunonegative. In peripuberal testis sections, cytoplasmic immunoreaction was weak in Sertoli cells, but it was strong in spermatocytes and sporadic in Leydig cells. Postpuberal testis sections displayed a moderate aromatase immunoexpression in spermatocytes while a strong immunostaining was observed in round and elongated spermatids, as well as in Leydig cells. These results indicate a different age-dependence of aromatase localization in rat testicular cells during gonadal development. In particular, inside the seminiferous tubules, the aromatization site moves from Sertoli cells to late germ cells, suggesting a proliferative role of aromatase in prepuberal testis and its subsequent involvement in meiotic and post-meiotic germ cell maturation. 相似文献
5.
6.
Cedric Loge Marc Le Borgne Pascal Marchand Jean-Michel Robert Guillaume Le Baut Martina Palzer 《Journal of enzyme inhibition and medicinal chemistry》2013,28(6):581-585
A three-dimensional (3-D) structure of human aromatase (CYP19) was modeled on the basis of the crystal structure of rabbit CYP2C5, the first solved X-ray structure of an eukaryotic cytochrome P450 and was evaluated by docking S-fadrozole and the steroidal competitive inhibitor (19R)-10-thiiranylestr-4-ene-3,17-dione, into the enzyme active site. According to a previous pharmacophoric hypothesis described in the literature, the cyano group of S-fadrozole partially mimics the steroid backbone C(17) carbonyl group of (19R)-10-thiiranylestr-4-ene-3,17-dione, and was oriented in a favorable position for H-bonding with the newly identified positively charged residues Lys119 and Arg435. In addition, this model is consistent with the recent combined mutagenesis/modeling studies already published concerning the roles of Asp309 and His480 in the aromatization of the steroid A ring. 相似文献
7.
Sex differences in the regulation of embryonic brain aromatase 总被引:2,自引:0,他引:2
J. B. Hutchison C. Beyer R. E. Hutchison A. Wozniak 《The Journal of steroid biochemistry and molecular biology》1997,61(3-6):315-322
Oestrogen formed from androgen by aromatization plays a critical role in the sexual differentiation of the male brain and behaviour. A question which has still to be answered is what regulates the gender-specific changes in aromatase activity forming oestrogen during sensitive periods of brain growth. Using a primary cell culture technique and sexed embryos, we have shown that in the fetal mouse brain, oestrogen formation in the male is neuronal rather than glial and aromatase activity is regionally localized, being higher in the hypothalamus than in the cortex. The aromatase activity measured from cells in culture has the same enzyme binding affinity (apparent Km 40 nM) as intact brain samples. Neurones developing in the embryonic male brain (embryonic day (ED) 15) contain higher aromatase activity (Vmax, 895 fmol/h/mg protein) than the female (Vmax, 604). Although a sex difference exists at early stages of embryonic development (ED 13), the embryonic aromatase system is regulated by steroids later in fetal development. The developing aromatase-containing neuroblasts probably form processes which connect to other aromatase neurones. Immunoreactive staining with an aromatase polyclonal antibody identifies an increase in numbers of aromatase-immunoreactive hypothalamic neuronal cell bodies following testosterone treatment. Testosterone treatment also causes both stimulation of neurite growth and branching as well as functional maturation of aromatase neurones. In particular, there is an increase in aromatase activity per neurone as well as a dramatic increase in the number of neurones expressing the enzyme. Both the functional and morphological changes depend on androgen receptor stimulation for several days in vitro. This conclusion is supported by colocalization studies which reveal a high number of fetal hypothalamic aromatase neurones co-expressing androgen receptor. We conclude that testosterone influences the growth of male hypothalamic neurones containing aromatase at a sensitive period of brain development. Endogenous steroid inhibitors of aromatase, probably formed within the neuroglia, also play a role in the control of oestrogen production. An endogenous 5-reduced metabolite of testosterone, 5-androstanedione, is almost as potent in inhibiting neuronal hypothalamic aromatase activity (Ki = 23 nM) as the synthetic non-steroidal inhibitors such as the imidazole, fadrozole, and the triazoles, arimidex and letrozole. It is clear that the oestrogen-forming capacity of the male hypothalamus has the special characteristics and plasticity of regulation which could affect brain differentiation at specific steroid-sensitive stages in ontogeny. 相似文献
8.
Loge C Le Borgne M Marchand P Robert JM Le Baut G Palzer M Hartmann RW 《Journal of enzyme inhibition and medicinal chemistry》2005,20(6):581-585
A three-dimensional (3-D) structure of human aromatase (CYP 19) was modeled on the basis of the crystal structure of rabbit CYP2C5, the first solved X-ray structure of an eukaryotic cytochrome P450 and was evaluated by docking S-fadrozole and the steroidal competitive inhibitor (19R)-10-thiiranylestr-4-ene-3,17-dione, into the enzyme active site. According to a previous pharmacophoric hypothesis described in the literature, the cyano group of S-fadrozole partially mimics the steroid backbone C(17) carbonyl group of (19R)-10-thiiranylestr-4-ene-3,17-dione, and was oriented in a favorable position for H-bonding with the newly identified positively charged residues Lys 119 and Arg435. In addition, this model is consistent with the recent combined mutagenesis/modeling studies already published concerning the roles ofAsp309 and His480 in the aromatization of the steroid A ring. 相似文献
9.
S. Graham-Lorence B. Amarneh R. E. White J. A. Peterson E. R. Simpson 《Protein science : a publication of the Protein Society》1995,4(6):1065-1080
P450 hemeproteins comprise a large gene superfamily that catalyzes monooxygenase reactions in the presence of a redox partner. Because the mammalian members are, without exception, membrane-bound proteins, they have resisted structure-function analysis by means of X-ray crystallographic methods. Among P450-catalyzed reactions, the aromatase reaction that catalyzes the conversion of C19 steroids to estrogens is one of the most complex and least understood. Thus, to better understand the reaction mechanism, we have constructed a three-dimensional model of P450arom not only to examine the active site and those residues potentially involved in catalysis, but to study other important structural features such as substrate recognition and redox-partner binding, which require examination of the entire molecule (excepting the putative membrane-spanning region). This model of P450arom was built based on a "core structure" identified from the structures of the soluble, bacterial P450s (P450cam, P450terp, and P450BM-P) rather than by molecular replacement, after which the less conserved elements and loops were added in a rational fashion. Minimization and dynamic simulations were used to optimize the model and the reasonableness of the structure was evaluated. From this model we have postulated a membrane-associated hydrophobic region of aliphatic and aromatic residues involved in substrate recognition, a redox-partner binding region that may be unique compared to other P450s, as well as residues involved in active site orientation of substrates and an inhibitor of P450arom, namely vorozole. We also have proposed a scheme for the reaction mechanism in which a "threonine switch" determines whether oxygen insertion into the substrate molecule involves an oxygen radical or a peroxide intermediate. 相似文献
10.
赤点石斑鱼两种芳香化酶cDNA的克隆及其表达的组织特异性 总被引:9,自引:0,他引:9
以赤点石斑鱼 (Epinephelusakaara)脑垂体中提取的RNA为模板 ,根据芳香化酶的保守序列设计引物 ,利用GeneRacerTM 技术 ,克隆出两种芳香化酶即脑芳香化酶 (P4 5 0aromB)和性腺芳香化酶 (P4 5 0aromA)的cDNA ,其全长分别为 190 1bp (编码 5 0 9aa)和 1833bp (编码 5 18aa)。序列分析结果表明 ,赤点石斑鱼两种芳香化酶cDNA序列的同源性为 5 1 6 % ,氨基酸序列之间同源性为 6 2 5 % ,与斜带石斑鱼两种芳香化酶氨基酸同源性分别为 94 7%和 97 9%。对 8个科的 10种鱼进行了分子系统进化树分析 ,结果与根据传统的形态学和生化特征分类进化地位基本一致。以特异性引物扩增雌、雄赤点石斑鱼各种组织 (垂体、嗅球、端脑、下丘脑、中脑、后脑、延脑、心脏、肾脏、肝脏、脾脏、性腺、鳃、胃、肠、皮肤、脂肪、肌肉、头肾、胸腺、鳔 ) ,以β actin作内标比较各组织芳香化酶基因表达量的差异 ,结果表明 ,赤点石斑鱼脑芳香化酶 (P4 5 0aromB)有广泛的组织分布 ,脑和垂体的表达量很高 ,各组织表达量有明显的雌、雄差异 ;而性腺芳香化酶 (P4 5 0aromA)表达主要集中于垂体和性腺 ,且不论雌雄 ,其性腺表达量均高于脑垂体 ,和P4 5 0aromB的表达模式明显不同 ,表现为在脑部 ,P4 5 0aromB表达量高于P4 5 0aromA ,而在性腺 , 相似文献
11.
Background
The enzyme cytochrome P450 aromatase, catalysing the conversion of androgens into estrogens, has been detected in normal human testicular cells suggesting a physiological role of local estrogen biosynthesis on spermatogenesis control. Estrogens, regulating cell growth and apoptosis, can also be involved in tumorigenesis process, but the possible link between estrogens and testicular neoplastic process is, up to now, scarcely known. This study examined aromatase expression in human seminoma, which is the most common germ cell tumour of the testis. 相似文献12.
Postnatal differentiation of the immunohistochemical expression of aromatase P450 in the rat pituitary gland 总被引:1,自引:0,他引:1
Carretero J Vázquez G Rubio M Blanco E Juanes JA Pérez E Burks D Vázquez R 《Histology and histopathology》2003,18(2):419-423
At our laboratory, we have recently demonstrated the immunohistochemical expression of aromatase P450 in the pituitary glands of adult rats; this expression was seen to be sex-dependent. In order to determine whether the changes in the expression of the enzyme are related to changes in the gonadal sphere and whether the expression of the enzyme is related to the postnatal differentiation of hypophyseal cytology, in the present work we performed an immunohistochemical study in the rat pituitary gland from birth to old age. The immunohistochemical reaction to aromatase was evident and very generalized at 7 days after birth, with no large differences between the male and female animals. At 14 days the immunohistochemical reaction was decreased in the females, with no changes in the males. At 17 days, aromatase immunoreactivity in the pituitary glands of female rats was very weak whereas the males showed large numbers of reactive cells. These observations were further pronounced at 21 days and 2 months of life. At 24 months, the immunoreactivity found in the pituitary glands of the male rats had almost completely disappeared. Our results show that a postnatal differentiation in the immunohistochemical expression of aromatase occurs; this is tightly linked to sexual activity and is lost in old age. This suggests that hypophyseal aromatase would be related to the mechanisms of action of gonadal steroids on hypophyseal differentiation and secretion. 相似文献
13.
M. E. Lauber A. Sarasin W. Lichtensteiger 《The Journal of steroid biochemistry and molecular biology》1997,61(3-6):359-364
Sex differences, androgen dependence and asymmetries of aromatase activity have been reported during ontogeny of the rat. It remains to be elucidated, however, whether the changes in aromatase activity are reflected by similar changes in specific mRNA levels. In addition, very little is known regarding mechanism(s) underlying such differential regulation of aromatase expression. To address these questions, we have employed the in situ hybridization (ISH) technique to examine specific mRNA levels in the brain of both male and female rats at selected stages of development. In prenatal stages of development, at gestational day (GD) 18 and 20, aromatase mRNA was detected in several hypothalamic and limbic brain regions. Semiquantitative analysis of aromatase mRNA did not reveal statistically significant sex differences in any of these regions (except in one experiment at GD20, when a sex difference was found in the medial preoptic nucleus). In contrast, clear sex differences were determined at postnatal day (PN) 2; male animals contained significantly more aromatase mRNA in the bed nucleus of the stria terminalis (BST) and thesexually dimorphic nucleus of the preoptic area (SDN) compared to female rats. Four days later in development, at PN6, sex differences of aromatase mRNA signals were observed in the BST, but were no longer detectable in the SDN. At PN15 and in adult animals, no sex differences could be determined. The effect of flutamide treatment (50 mg/kg/day) was investigated in GD20 fetuses as well as in adult rats. No statistically significant changes in aromatase mRNA expression were found in either case. In summary, our results suggest that differential regulation of aromatase mRNA expression during the critical period of sexual differentiation might, in part, account for the establishment of some of the many sexually dimorphic parameters of the rat brain. The role of androgens in the regulation of the sex-specific and developmental expression of aromatase mRNA in the rat brain remains to be clarified. 相似文献
14.
Inhibition of human cytochrome P450 aromatase activity by butyltins 总被引:10,自引:0,他引:10
Organotin compounds are widely used as antifouling agents and bioaccumulate in the food chain. Tributyltin chloride (TBT) has been shown to induce imposex in female gastropods. On the basis of this observation it has been suggested that TBT acts as an endocrine disrupter inhibiting the conversion of androgens to estrogens mediated by the aromatase cytochrome P450 enzyme. However, to date, the molecular basis of TBT-induced imposex and in particular its putative inhibitory effects on human aromatase cytochrome P450 activity have not been investigated. Therefore, we examined the effects of the organotin compounds tetrabutyltin (TTBT), TBT, dibutyltin dichloride (DBT) and monobutyltin trichloride (MBT) on human placental aromatase activity. TBT was found to be a partial competitive inhibitor of aromatase activity with an IC(50) value of 6.2 microM with 0.1 microM androstenedione as substrate. TBT impaired the affinity of the aromatase to androstenedione but did not affect electron transfer from NADPH to aromatase via inhibiting the NADPH reductase. DBT acted as a partial but less potent inhibitor of human aromatase activity (65% residual activity), whereas TTBT and MBT had no effect. The residual activity of TBT-saturated aromatase was 37%. In contrast, human 3beta-HSD type I activity was only moderately inhibited by TBT (80% residual activity). Moreover, neither TTBT or DBT nor MBT inhibited the 3beta-HSD type I activity. Together, these results suggest that the environmental pollutants TBT and DBT, both present in marine organisms, textile and plastic products, may have specific impacts on the metabolism of sex hormones in humans. 相似文献
15.
16.
17.
Combination of the pYeDP60 yeast expression system with a modified version of the improved uracil-excision (USER) cloning technique provides a new powerful tool for high-throughput expression of eukaryotic cytochrome P450s. The vector presented is designed to obtain an optimal 5' untranslated sequence region for yeast (Kozak consensus sequence), and has been tested to produce active P450s and NADPH-cytochrome P450 oxidoreductase (CPR) after 5' end silent codon optimization of the cDNA sequences. Expression of two plant cytochrome P450s, Sorghum bicolor CYP79A1 and CYP71E1, and S. bicolor CPR2 using the modified pYeDP60 vector in all three cases produced high amounts of active protein. High-throughput functional expression of cytochrome P450s have long been a troublesome task due to the workload involved in cloning of each individual P450 into a suitable expression vector. The redesigned yeast P450 expression vector (pYeDP60u) offers major improvements in cloning efficiency, speed, fidelity, and simplicity. The modified version of the USER cloning system provides great potential for further development of other yeast vectors, transforming these into powerful high-throughput expression vectors. 相似文献
18.
Peroxisome proliferator-activated receptors (PPARs) play important roles in the metabolic regulation of lipids including steroids. In this study, we investigated whether fenofibrate, a ligand for PPARalpha, could influence estrogen synthesis in vivo in the ovary of mice. As reported, chronic treatment of C57BL6/J female mice with various amounts of fenofibrate as a diet reduced the serum triglycerides level and induced hepatomegaly in a dose-dependent manner. Northern blot analyses using hepatic RNA confirmed the induction of classical PPARalpha-target genes including acyl-CoA oxidase and lipoprotein lipase. The analyses using ovarian RNA revealed the suppression of gene expression for enzymes involved in steroidogenesis including CYP11A, CYP19, steroidogenic acute regulatory protein, and HDL receptor, but the CYP17 expression was evidently induced. Consistent with the suppression of CYP19 mRNA expression, the aromatase activity in the ovary was dose-dependently inhibited, resulting in significant decreases in the uterine size and bone mineral density. When PPARalpha null mice were treated with dietary fenofibrate, neither hepatomegaly nor inhibition of ovarian aromatase activity was observed, rather the activity was enhanced. These results demonstrate that fenofibrate inhibits ovarian estrogen synthesis by suppressing the mRNA expressions and that functional PPARalpha is indispensable for the inhibitory action of the agent in vivo. 相似文献
19.
20.
Słomczyńska M Duda M Sl zak K 《Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society》2001,39(1):9-13
The aim of this study was to visualize the expression of androgen receptor, cytochrome P450 aromatase and FSH receptor mRNAs in various structures of porcine ovary. Porcine ovaries were frozen in liquid nitrogen, and 8 microm sections were prepared for in situ hybridization. In the small, medium and large antral follicles as well as in early, midluteal and regressing corpora lutea, mRNAs for androgen receptor, P450 aromatase and FSH receptor were detected. In small antral follicles high levels of mRNAs for androgen and FSH receptors were observed, mainly in the granulosa layer, while mRNA expression for P450 aromatase was negligible. As follicles grew, amount of mRNAs for androgen receptor and FSH receptor decreased, and that for P450 aromatase increased. Small amounts of androgen receptor mRNA were also present in corpora lutea at all examined stages. P450 aromatase mRNA was not detected in early and midluteal corpora lutea. However, regressing corpus luteum showed a weak expression of aromatase mRNA. 相似文献