首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has recently been reported that the synaptic acetylcholinesterase (AChE) in mosquitoes is encoded by the ace-1 gene, distinct and divergent from the ace-2 gene, which performs this function in Drosophila. This is an unprecedented situation within the Diptera order because both ace genes derive from an old duplication and are present in most insects and arthropods. Nevertheless, Drosophila possesses only the ace-2 gene. Thus, a secondary loss occurred during the evolution of Diptera, implying a vital function switch from one gene (ace-1) to the other (ace-2). We sampled 78 species, representing 50 families (27% of the Dipteran families) spread over all major subdivisions of the Diptera, and looked for ace-1 and ace-2 by systematic PCR screening to determine which taxonomic groups within the Diptera have this gene change. We show that this loss probably extends to all true flies (or Cyclorrhapha), a large monophyletic group of the Diptera. We also show that ace-2 plays a non-detectable role in the synaptic AChE in a lower Diptera species, suggesting that it has non-synaptic functions. A relative molecular evolution rate test showed that the intensity of purifying selection on ace-2 sequences is constant across the Diptera, irrespective of the presence or absence of ace-1, confirming the evolutionary importance of non-synaptic functions for this gene. We discuss the evolutionary scenarios for the takeover of ace-2 and the loss of ace-1, taking into account our limited knowledge of non-synaptic functions of ace genes and some specific adaptations of true flies.  相似文献   

2.
3.
Gene duplication is thought to be the main potential source of material for the evolution of new gene functions. Several models have been proposed for the evolution of new functions through duplication, most based on ancient events (Myr). We provide molecular evidence for the occurrence of several (at least 3) independent duplications of the ace-1 locus in the mosquito Culex pipiens, selected in response to insecticide pressure that probably occurred very recently (<40 years ago). This locus encodes the main target of several insecticides, the acetylcholinesterase. The duplications described consist of 2 alleles of ace-1, 1 susceptible and 1 resistant to insecticide, located on the same chromosome. These events were detected in different parts of the world and probably resulted from distinct mechanisms. We propose that duplications were selected because they reduce the fitness cost associated with the resistant ace-1 allele through the generation of persistent, advantageous heterozygosis. The rate of duplication of ace-1 in C. pipiens is probably underestimated, but seems to be rather high.  相似文献   

4.
Recent analysis of the complete mosquito Anopheles gambiae genome has revealed a far higher number of opsin genes than for either the Drosophila melanogaster genome or any other known insect. In particular, the analysis revealed an extraordinary opsin gene content expansion, whereby half are long wavelength-sensitive (LW) opsin gene duplicates. We analyzed this genomic data in relationship to other known insect opsins to estimate the relative timing of the LW opsin gene duplications and to identify "missing" paralogs in extant species. The inferred branching patterns of the LW opsin gene family phylogeny indicate at least one early gene duplication within insects before the emergence of the orders Orthoptera, Mantodea, Hymenoptera, Lepidoptera, and Diptera. These data predict the existence of one more LW opsin gene than is currently known from most insects. We tested this prediction by using a degenerate PCR strategy to screen the hymenopteran genome for novel LW opsin genes. We isolated two LW opsin gene sequences from each of five bee species, Bombus impatiens, B. terrestris, Diadasia afflicta, D. rinconis, and Osmia rufa, including 1.1 to 1.2 kb from a known (LW Rh1) and 1 kb from a new opsin gene (LW Rh2). Phylogenetic analysis suggests that the novel hymenopteran gene is orthologous to A. gambiae GPRop7, a gene that is apparently missing from D. melanogaster. Relative rate tests show that LW Rh2 is evolving at a slower rate than LW Rh1 and, therefore, may be a useful marker for higher-level hymenopteran systematics. Site-specific rate tests indicate the presence of several amino acid sites between LW Rh1 and LW Rh2 that have undergone shifts in selective constraints after duplication. These sites and others are discussed in relationship to putative structural and functional differences between the two genes.  相似文献   

5.
Insensitive acetylcholinesterase (AChE) has been shown to be responsible for resistance to organophosphates and carbamates in a number of arthropod species. Some arthropod genomes contain a single Ace gene, while others including mosquitoes contain two genes, but only one confers insecticide resistance. Here we report the isolation of the full-length cDNA and characterization of the complete genomic DNA sequence for the Ace1 gene in the yellow fever mosquito, Aedes aegypti. The Ace1 homolog in other mosquito species has been associated with insecticide resistance. The full-length cDNA consists of 2721bp and contains a 2109bp open reading frame that encodes a 702 amino acid protein. The amino acid sequence is highly conserved with that of other mosquitoes, including greater than 90% identity with Culex spp. and about 80% identity with Anopheles gambiae. The genomic DNA sequence includes 138,970bp and consists of eight exons with seven introns ranging from 59 to 114,350bp. Exons 2 and 8 show reduced amino acid conservation across mosquito species, while exons 3-7 are highly conserved. The Ace1 introns in Ae. aegypti reflect a high frequency of repetitive sequences that comprise about 45% of the total intron sequence. The Ace1 locus maps to the p-arm of chromosome 3, which corresponds to the orthologous genome regions in Culex spp. and An. gambiae.  相似文献   

6.
昆虫乙酰胆碱酯酶基因研究进展   总被引:3,自引:0,他引:3  
对昆虫乙酰胆碱酯酶(acetylcholinesterase, AChE,EC 3.1.1.7)的基因结构和表达等方面的研究进展进行了综述。分析了昆虫乙酰胆碱酯酶基因的结构,包括10个外显子的特征。对已经报道的昆虫AChE基因进行了系统归纳,并基于已知全序列的昆虫AChE基因,进行了昆虫AChE基因的分子进化分析。对昆虫AChE基因的结构特点及其功能,以及昆虫AChE基因的活性位点、AChE的变构与昆虫抗药性的关系进行了探讨。最后对昆虫AChE基因研究中存在的问题和前景进行了分析和展望。  相似文献   

7.
8.
Iurlova AA  Makunin IV  Zhimulev IF 《Genetika》2010,46(9):1272-1275
Different genome regions differ in replication timing during the S phase. Late-replicating sequences are often underreplicated in the Drosophila salivary-gland polytene chromosomes. The SuUR gene, whose mutation changes the replication time of late-replicating regions in salivary-gland cells, has been identified in Drosophila melanogaster. The SUUR protein lacks homologs by a BLAST search, and only moderate homology is observed between its N-terminal end and chromatin-remodeling proteins of the SWI2/SNF2 family. The gene and the protein were analyzed in insects. Orthologs of the SuUR gene were found in all annotated Drosophila species. The number of amino acid substitutions in the SUUR protein proved to be extremely high, corresponding to that of rapidly evolving genes. Orthologs with low homology were found in mosquitoes Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. No orthologs of the SuUR gene were detected beyond Diptera.  相似文献   

9.
Genetic changes conferring adaptation to a new environment may induce a fitness cost in the previous environment. Although this prediction has been verified in laboratory conditions, few studies have tried to document this cost directly in natural populations. Here, we evaluated the pleiotropic effects of insecticide resistance on putative fitness components of the mosquito Culex pipiens. Experiments using different larval densities were performed during the summer in two natural breeding sites. Two loci that possess alleles conferring organophosphate (OP) resistance were considered: ace-1 coding for an acetylcholinesterase (AChE1, the OP target) and Ester, a 'super locus" including two closely linked loci coding for esterases A and B. Resistance ace-1 alleles coding for a modified AChE1 were associated with a longer development time and shorter wing length. The pleiotropic effects of two resistance alleles Ester1 and Ester4 coding for the overproduced esterases A1 and A4-B4, respectively, were more variable. Both A1 and A4-B4 reduced wing length, although only A1 was associated with a longer preimaginal stage. The fluctuating asymmetry (FA) of the wing did not respond to the presence or to the interaction of resistance alleles at the two loci at any of the density levels tested. Conversely, the FA of one wing section decreased when larval density increased. This may be the consequence of selection against less developmentally stable individuals. The results are discussed in relation to the local evolution of insecticide resistance genes.  相似文献   

10.
Benin has embraced World Health Organization-recommended preventive strategies to control malaria. Its National Malaria Control Programme is implementing and/or coordinating various actions and conducting evaluation trials of mosquito control strategies. Mosquito control is based on the use of insecticide-treated nets and indoor residual spraying, but the efficacy of these strategies to control malaria vectors is endangered by insecticide resistance. Here, we present the results of a nationwide survey on the status of insecticide susceptibility and resistance in Anopheles gambiae s.l. (Diptera: Culicidae) carried out in Benin in 2006-2007 (i.e. before extensive vector control was undertaken). Overall, our study showed that the S molecular form of An. gambiae s.s. predominates and is widely distributed across the country, whereas the frequency of the M form shows a strong decline with increasing latitude. Susceptibility to DDT, permethrin, carbosulfan and chlorpyrifos-methyl was assessed; individual mosquitoes were identified for species and molecular forms, and genotyped for the kdr and ace-1 loci. Full susceptibility to chlorpyrifos-methyl was recorded and very few samples displayed resistance to carbosulfan. High resistance levels to permethrin were detected in most samples and almost all samples displayed resistance to DDT. The kdr-Leu-Phe mutation was present in all localities and in both molecular forms of An. gambiae s.s. Furthermore, the ace-1(R) mutation was predominant in the S form, but absent from the M form. By contrast, no target modification was observed in Anopheles arabiensis. Resistance in the An. gambiae S molecular form in this study seemed to be associated with agricultural practices. Our study showed important geographic variations which must be taken into account in the vector control strategies that will be applied in different regions of Benin. It also emphasizes the need to regularly monitor insecticide resistance across the country and to adapt measures to manage resistance.  相似文献   

11.
A genome-wide analysis of innate immunity-related genes and gene families was conducted using the silkworm, Bombyx mori. We identified orthologs for a large number of genes involved in insect immunity that have been reported from Drosophila melanogaster (Diptera), Anopheles gambiae (Diptera), Apis mellifera (Hymenoptera) and Tribolium castaneum (Coleoptera). B. mori has a unique recognition gene and antimicrobial peptide genes that are not present in the Drosophila, Anopheles, Apis and Tribolium genomes, suggesting a lineage-specific gene evolution for lepidopteran insects. The comparative analysis of the insect immune repertoires indicated a dynamic and flexible gene expansion in recognition, modulation and effector mechanisms due to different selection pressures. Differential gene regulation by different bacterial species was found in PGRP and Serpin genes, suggesting that Bombyx has a highly selective gene regulation system depending on bacterial species.  相似文献   

12.
Abstract Acetylcholinesterase (AChE) plays a vital role in the nervous system of insects and other animal species and serves as the target for many chemical agents such as organophosphate and carbamate insecticides. The mosquito, Culex pipiens complex, a vector of human disease, has evolved to be resistant to insecticides by a limited number of amino acid substitutions in AChE1, which is encoded by the ace‐1 gene. The aims of this study are to identify single nucleotide polymorphism (SNP) sites in the ace‐1 gene of the C. pipiens complex and explore an economical high‐throughput method to differentiate the genotypes of these sites in mosquitoes collected in the field. We identified 22 SNP sites in exon regions of the ace‐1 gene. Four of them led to non‐synonymous mutations, that is, Y163C, G247S, C677S and T682A. We used matrix‐assisted laser desorption ionization – time‐of‐flight mass spectrometry for genotyping at these four sites and another site F416V, which was relevant to insecticide resistance, in 150 mosquitoes collected from 15 field populations. We were able to synchronize analysis of the five SNP sites in each well of a 384‐well plate for each individual mosquito, thus decreasing the cost to one‐fifth of the routine analysis. Heterozygous genotypes at Y163C and G247S sites were observed in one mosquito. The possible influence of the five SNP sites on the activity or function of the enzyme is discussed based on the predicted tertiary structure of the enzyme.  相似文献   

13.
Acetylcholinesterase (AChE) has been known to be the target of organophosphorous and carbamate insecticides. Only a single AChE, however, existed in insects and was involved in insecticide resistance, recently another AChE is reported in mosquitoes and aphids. We have cloned cDNAs encoding two ace genes, designated as Ha-ace1 and Ha-ace2 by a combined degenerate PCR and RACE strategy from adult heads of the oriental tobacco budworm, Helicoverpa assulta. The Ha-ace1 and Ha-ace2 genes encode 664 and 647 amino acids, respectively and have conserved motifs including a catalytic triad, a choline-binding site and an acyl pocket. Both Ha-AChEs were determined to be secretory proteins based on the existence of a signal peptide. The Ha-ace1 gene, the first reported ace1 in lepidopterans, belongs to the ace1 subfamily whereas the Ha-ace2 gene showed high similarity to those in the ace2 subfamily. Phylogenetic analysis showed that the Ha-ace1 gene was completely diverged from the Ha-ace2, suggesting that the Ha-ace genes are duplicated. Quantitative real time-PCR revealed that expression level of the Ha-ace1 gene was much higher than that of the Ha-ace2 in all body parts examined. The biochemical properties of purified proteins by affinity chromatography showed substrate specificity for acetylthiocholine iodide, and inhibitor specificity for BW284C51 and eserine and their peptide sequences partially identified by a MALDI-TOF mass spectrometer demonstrated that two Ha-AChEs were expressed in vivo.  相似文献   

14.
Olfaction is critical to the host preference selection behavior of many disease-transmitting insects, including the mosquito Anopheles gambiae sensu stricto (hereafter A. gambiae), one of the major vectors for human malaria. In order to more fully understand the molecular biology of olfaction in this insect, we have previously identified several members member of a family of candidate odorant receptor proteins from A. gambiae (AgORs). Here we report the cloning and characterization of an additional AgOR gene, denoted as AgOr5, which shows significant similarity to putative odorant receptors in A. gambiae and Drosophila melanogaster and which is selectively expressed in olfactory organs. AgOr5 is tightly clustered within the A. gambiae genome to two other highly homologous candidate odorant receptors, suggesting that these genes are derived from a common ancestor. Analysis of the developmental expression within members of this AgOR gene cluster reveals considerable variation between these AgORs as compared to candidate odorant receptors from D. melanogaster.  相似文献   

15.
The Hox genes play a central role in regulating development and are involved in the specification of cell fates along the anteroposterior axis. In insects and vertebrates, these genes are clustered and organized in an arrangement that is largely conserved across evolutionary lineages. By exploiting the sequence conservation of the homeobox, orthologues of the Hox genes Sex combs reduced (Scr), fushi tarazu (ftz), Antennapedia (Antp), Ultrabithorax (Ubx), and abdominal-A (abd-A) have been isolated from the malaria vector mosquito, Anopheles gambiae. These genes were first identified in Drosophila, where they achieve a high level of functional complexity, in part, by the use of alternative promoters, polyadenylation sites, and splicing to generate different protein isoforms. Preliminary analyses of the Anopheles Hox genes suggest that they do not achieve their functional complexity in the same manner. Using a combination of in situ hybridization to polytene chromosomes and chromosome walking, the Anopheles Hox genes have been localized to a single cluster in the region 19D-E on chromosome 2R, a situation distinct from that of Drosophila where the Hox complex is split into two clusters. This study, therefore, provides a framework for future comparative analyses of the structure, organization, and expression of developmental regulatory genes between the lower and higher Diptera. Moreover, the genes that have been isolated enhance the genetic and physical maps of chromosome 2R in this medically important mosquito species.  相似文献   

16.
17.
The Anopheles gambiae genome sequence has been analyzed to find ATP-binding cassette protein genes based on deduced protein similarity to known family members. A nonredundant collection of 44 putative genes was identified including five genes not detected by the original Anopheles genome project machine annotation. These genes encode at least one member of all the human and Drosophila melanogaster ATP-binding protein subgroups. Like D. melanogaster, A. gambiae has subgroup ABCH genes encoding proteins different from the ABC proteins found in other complex organisms. The largest Anopheles subgroup is the ABCC genes which includes one member that can potentially encode ten different isoforms of the protein by differential splicing. As with Drosophila, the second largest Anopheles group is the ABCG subgroup with 12 genes compared to 15 genes in D. melanogaster, but only 5 genes in the human genome. In contrast, fewer ABCA and ABCB genes were identified in the mosquito genome than in the human or Drosophila genomes. Gene duplication is very evident in the Anopheles ABC genes with two groups of four genes, one group with three genes and three groups with two head to tail duplicated genes. These characteristics argue that the A. gambiae is actively using gene duplication as a mechanism to drive genetic variation in this important gene group.  相似文献   

18.
The Methoprene-tolerant (Met) gene in Drosophila melanogaster has been shown to function in juvenile hormone (JH) action. Met homologs were isolated from three mosquito species, Culex pipiens, Aedes aegypti and Anopheles gambiae. Sequence similarity was found to be high in bHLH and PAS conserved domains, and the majority of the 7-9 introns in AaMet and AgMet are located in either identical or similar positions, indicating evolutionary relatedness. Sequence comparison with Met and the similar germ-cell expressed (gce) gene in D. melanogaster showed that the mosquito genes are more similar to gce than to Met. Moreover, the multiple introns in AgMet and AaMet are more similar in number with the 7 introns in Dmgce than to the single intron in DmMet; in fact, six intron positions in AaMet and AgMet are similar to those in Dmgce. Efforts to identify a second homologous gene in mosquitoes were unsuccessful, suggesting a single gene in lower Diptera, consistent with the single gene uncovered in genomic sequencing of Ae. aegypti and An. gambiae. These results suggest that a gene duplication occurred during the evolution of higher Diptera, resulting in Met and gce.  相似文献   

19.
Although mosquito genome projects uncovered orthologues of many known developmental regulatory genes, extremely little is known about the development of vector mosquitoes. Here, we investigate the role of the Netrin receptor frazzled (fra) during embryonic nerve cord development of two vector mosquito species. Fra expression is detected in neurons just prior to and during axonogenesis in the embryonic ventral nerve cord of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector). Analysis of fra function was investigated through siRNA-mediated knockdown in Ae. aegypti embryos. Confirmation of fra knockdown, which was maintained throughout embryogenesis, indicated that microinjection of siRNA is an effective method for studying gene function in Ae. aegypti embryos. Loss of fra during Ae. aegypti development results in thin and missing commissural axons. These defects are qualitatively similar to those observed in Dr. melanogaster fra null mutants. However, the Aa. aegypti knockdown phenotype is stronger and bears resemblance to the Drosophila commissureless mutant phenotype. The results of this investigation, the first targeted knockdown of a gene during vector mosquito embryogenesis, suggest that although Fra plays a critical role during development of the Ae. aegypti ventral nerve cord, mechanisms regulating embryonic commissural axon guidance have evolved in distantly related insects.  相似文献   

20.
The database of the Drosophila Genome Project contains the sequences of two genes, CG8784 and CG8795, predicted to code for two structurally related G protein-coupled receptors. We have cloned these genes and expressed their coding parts in Chinese hamster ovary cells. We found that both receptors can be activated by low concentrations of the Drosophila neuropeptide pyrokinin-2 (CG8784, EC(50) for pyrokinin-2, 1x10(-9)M; CG8795, EC(50) for pyrokinin-2, 5 x 10(-10)M). The precise role of Drosophila pyrokinin-2 (SVPFKPRLamide) in Drosophila is unknown, but in other insects, pyrokinins have diverse myotropic actions and are also initiating sex pheromone biosynthesis and embryonic diapause. Gene silencing, using the RNA-mediated interference technique, showed that CG8784 gene silencing caused lethality in embryos, whereas CG8795 gene silencing resulted in strongly reduced viability for both embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors to be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号