首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous studies showed that dopamine inhibits Na+,K+-ATPase activity in acutely dissociated neurons from striatum. In the present study, we have found that in this preparation, dopamine inhibited significantly (by approximately 25%) the activity of the alpha3 and/or alpha2 isoforms, but not the alpha1 isoform, of Na+,K+-ATPase. Dopamine, via D1 receptors, activates cyclic AMP-dependent protein kinase (PKA) in striatal neurons. Dopamine is also known to activate the calcium- and phospholipid-dependent protein kinase (PKC) in a number of different cell types. The PKC activator phorbol 12,13-dibutyrate reduced the activity of Na+,K+-ATPase alpha3 and/or alpha2 isoforms (by approximately 30%) as well as the alpha1 isoform (by approximately 15%). However, dopamine-mediated inhibition of Na+,K+-ATPase activity was unaffected by calphostin C, a PKC inhibitor. Dopamine did not affect the phosphorylation of Na+,K+-ATPase isoforms at the PKA-dependent phosphorylation site. Phorbol ester treatment did not alter the phosphorylation of alpha2 or alpha3 isoforms of Na+,K+-ATPase in neostriatal neurons but did increase the phosphorylation of the alpha1 isoform. Thus, in rat neostriatal neurons, treatment with either dopamine or PKC activators results in inhibition of the activity of specific (alpha3 and/or alpha2) isoforms of Na+,K+-ATPase, but this is not apparently mediated through direct phosphorylation of the enzyme. In addition, PKC is unlikely to mediate inhibition of rat Na+,K+-ATPase activity by dopamine in neostriatal neurons.  相似文献   

2.
The effects of nerve growth factor (NGF) on induction of Na+,K+-ATPase were examined in a rat pheochromocytoma cell line, PC12h. Na+,K+-ATPase activity in a crude particulate fraction from the cells increased from 0.37 +/- 0.02 (n = 19) to 0.55 +/- 0.02 (n = 20) (means +/- SEM, mumol Pi/min/mg of protein) when cultured with NGF for 5-11 days. The increase caused by NGF was prevented by addition of specific anti-NGF antibodies. Epidermal growth factor and insulin had only a small effect on induction of Na+,K+-ATPase. A concentration of basic fibroblast growth factor three times higher than that of NGF showed a similar potency to NGF. The molecular form of the enzyme was judged as only the alpha form in both the untreated and the NGF-treated cells by a simple pattern of low-affinity interaction with cardiotonic steroids: inhibition of enzyme activity by strophanthidin (Ki approximately 1 mM) and inhibition of Rb+ uptake by ouabain (Ki approximately 100 microM). As a consequence, during differentiation of PC12h cells to neuron-like cells, NGF increases the alpha form of Na+,K+-ATPase, but does not induce the alpha(+) form of the enzyme, which has a high sensitivity for cardiotonic steroid and is a characteristic form in neurons.  相似文献   

3.
The cellular distribution of Na+, K+-ATPase subunit isoforms was mapped in the secretory epithelium of the human prostate gland by immunostaining with antibodies to the alpha and beta subunit isoforms of the enzyme. Immunolabeling of the alpha1, beta1 and beta2 isoforms was observed in the apical and lateral plasma membrane domains of prostatic epithelial cells in contrast to human kidney where the alpha1 and beta1 isoforms of Na+, K+-ATPase were localized in the basolateral membrane of both proximal and distal convoluted tubules. Using immunohistochemistry and PCR we found no evidence of Na+, K+-ATPase alpha2 and alpha3 isoform expression suggesting that prostatic Na+, K+-ATPase consists of alpha1/beta1 and alpha1/beta2 isozymes. Our immunohistochemical findings are consistent with previously proposed models placing prostatic Na+, K+-ATPase in the apical plasma membrane domain. Abundant expression of Na+, K+-ATPase in epithelial cells lining tubulo-alveoli in the human prostate gland confirms previous conclusions drawn from biochemical, pharmacological and physiological data and provides further evidence for the critical role of this enzyme in prostatic cell physiology and ion homeostasis. Na+, K+-ATPase most likely maintains an inwardly directed Na+ gradient essential for nutrient uptake and active citrate secretion by prostatic epithelial cells. Na+, K+-ATPase may also regulate lumenal Na+ and K+, major counter-ions for citrate.  相似文献   

4.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

5.
Free Mg2+ is studied for its effect on the activation kinetics of pig kidney Na+, K+-ATPase by monovalent cations (nH and K0.5 for Na+ and K+ are determined). It is established that at the saturating concentration of complementary ion-activator an increase of free Mg2+ concentration up to 12 mM is accompanied by a rise of nH and K0.5 for Na+ and a fall of K0.5 for K+ without nH changes for this cation. The analysis of inhibition kinetics shows that free Mg2+ is a competitive inhibitor as to Na+ and noncompetitive as to K+. It is concluded that inhibition of Na+, K+-ATPase by free Mg2+ is a complex process including competition with Na+ at its binding sites and the "occluding" of enzyme at the stage, preceding dissociation of cation and also the weakening of subunit interactions in the enzyme.  相似文献   

6.
Inactivation of Na+, K+ -ATPase from cattle brain by sodium fluoride   总被引:3,自引:0,他引:3  
The influence of the physiological ligands and modifiers on the plasma membrane Na+, K+ -ATPase from calf brain inactivation by sodium fluoride (NaF) is studied. ATP-hydrolyzing activity of the enzyme was found to be more stable as to NaF inhibition than its K+ -pNPPase activity. The activatory ions of Na+, K+ -ATPase have different effects on the process of the enzyme inhibition by NaF. K+ intensifies inhibition, but Na+ does not affect it. An increase of [Mg2+free] in the incubation medium (from 0.5 to 3.0 mM) rises the sensitivity of Na+, K+ -ATPase to NaF inhibition. But an increase of [ATP] from 0.3 to 1.5 mM has no effect on this process. Ca and Mg ions modify Na+, K+ -ATPase inhibition by fluoride differently. Ca2+free levels this process, and Mg2+free on the contrary increases it. In the presence of Ca ions and in the neutral-alkaline medium (pH 7.0-8.5) the recovery of activity of the transport ATPase inhibited by-NaF takes place. Sodium citrate also protects both ATP-hydrolizing and K-pNPPase activity of the Na+, K+ -ATPase from NaF inhibition. Under the modifing membranous effects (the treatment of plasma membranes by Ds-Na and digitonin) the partial loss of Na+, K+ -ATPase sensitivity to NaF inhibition is observed. It is concluded that Na+, K+ -ATPase inactivation by NaF depends on the influence of the physiological ligands and modifiers as well as on the integrity of membrane structure.  相似文献   

7.
In this study we have evaluated the specificity of different PKC isozymes for the phosphorylation of the catalytic alpha1 subunit of rat renal Na+,K+-ATPase (alpha1 Na+,K+-ATPase). Using in vitro phosphotransferase assays we found that classical PKCs (cPKCs) alpha, betaI, and gamma efficiently phosphorylate alpha1 Na+,K+-ATPase. However, alpha1 Na+,K+-ATPase was a poor substrate for the novel PKCs (nPKCs) delta and epsilon. Two-dimensional phosphopeptide mapping revealed a similar pattern of phosphorylation by all cPKCs. The functional significance of this finding was evaluated by measuring Na+,K+-ATPase activity (assessed by 86Rb+ uptake) in COS-7 cells expressing the rat alpha1 Na+,K+-ATPase. 1-oleoyl-2-acetoyl-sn-glycerol (OAG), a nonselective PKC activator, inhibited Na+,K+-ATPase activity in this system. On the other hand, 12-deoxyphorbol-13-phenylacetate (DPP), which preferentially activates nPKCepsilon, did not affect 86Rb+ uptake. These results indicate a differential pattern of phosphorylation and regulation of rat renal Na+,K+-ATPase activity by PKC isoforms and suggest an important role for cPKCs in the physiological regulation of the pump.  相似文献   

8.
This study was designed to establish the properties of liver plasma membranes (LPM) Na+,K+-ATPase in the hamster and to determine whether a similar assay may be used to measure enzyme activity in the hamster and in the rat. Maximal Na+,K+-ATPase activity was obtained when the assay medium contained 5 mM Mg APT2- with or without 1 mM free Mg2+, 120 mM Na+, 12,5 mM K+. The incubation must be performed at 37 degrees C, pH 7.4. In the absence of free Mg2+, the saturation curve with respect to the substrate Mg ATP2- resulted in biphasic complex kinetics with a maximal activity at a substrate concentration of 5 mM. In the presence of 1 mM free Mg2+ activation of Na+,K+-ATPase and modification of the kinetics were observed: the biphasic curve tended to disappear and to become of the Michaelis-Menten type. The apparent Km for Mg APT2- was 0.36 mM and the Vmax 34.5 mumol.h-1.mg protein-1. In the presence of 10 mM free Mg2+ a decrease in the Vmax was observed without any effect on the apparent Km for Mg APT2-. It is concluded that the same incubation medium may be used to assay LPM N+,K+-ATPase from hamster and rat and that the addition of 1 mM free Mg2+ to the incubation medium is recommended to obtain Michaelis-Menten kinetics in order to eliminate complex kinetics due to the absence of free Mg2+.  相似文献   

9.
Na+,K+-ATPase (porcine alpha/his10-beta) has been expressed in Pichia Pastoris, solubilized in n-dodecyl-beta-maltoside and purified to 70-80% purity by nickel-nitrilotriacetic acid chromatography combined with size exclusion chromatography. The recombinant protein is inactive if the purification is done without added phospholipids. The neutral phospholipid, dioleoylphosphatidylcholine, preserves Na+,K+-ATPase activity of protein prepared in a Na+-containing medium, but activity is lost in a K+-containing medium. By contrast, the acid phospholipid, dioleoylphosphatidylserine, preserves activity in either Na+- or K+-containing media. In optimal conditions activity is preserved for about 2 weeks at 0 degrees C. Both recombinant Na+,K+-ATPase and native pig kidney Na+,K+-ATPase, dissolved in n-dodecyl-beta-maltoside, appear to be mainly stable monomers (alpha/beta) as judged by size exclusion chromatography and sedimentation velocity. Na+,K+-ATPase activities at 37 degrees C of the size exclusion chromatography-purified recombinant and renal Na+,K+-ATPase are comparable but are lower than that of membrane-bound renal Na+,K+-ATPase. The beta subunit is expressed in Pichia Pastoris as two lightly glycosylated polypeptides and is quantitatively deglycosylated by endoglycosidase-H at 0 degrees C, to a single polypeptide. Deglycosylation inactivates Na+,K+-ATPase prepared with dioleoylphosphatidylcholine, whereas dioleoylphosphatidylserine protects after deglycosylation, and Na+,K+-ATPase activity is preserved. This work demonstrates an essential role of phospholipid interactions with Na+,K+-ATPase, including a direct interaction of dioleoylphosphatidylserine, and possibly another interaction of either the neutral or acid phospholipid. Additional lipid effects are likely. A role for the beta subunit in stabilizing conformations of Na+,K+-ATPase (or H+,K+-ATPase) with occluded K+ ions can also be inferred. Purified recombinant Na+,K+-ATPase could become an important experimental tool for various purposes, including, hopefully, structural work.  相似文献   

10.
Specific effects of spermine on Na+,K+-adenosine triphosphatase   总被引:2,自引:0,他引:2  
Specific effects of spermine on Na+,K+-ATPase were observed using an enzyme partially purified from rabbit kidney microsomes by extraction with deoxycholate. 1. Spermine competed with K+ for K+-dependent, ouabain-sensitive nitrophenylphosphatase. The K1 for spermine was 0.075 mm in the presence of 1 mM Mg2+ and 5 mM p-nitrophenylphosphate at pH 7.5. 2. spermine activated Na+,K+-ATPase over limited concentration ranges of K+ and Na+ in the presence of 0.05 mM ATP. The spermine concentration required for half maximal activation was 0.055 mM in the presence of 1 mM K+, 10 mM Na+, 1 mM Mg2+, and 0.05 mM ATP. 3. The activation of Na+,K4-ATPase was not due to substitution of spermine for K+, Na+, or Mg2+. 4. When the concentration of K+ or Na+ was extremely low, or in excess, spermine did not activate Na+,K+-ATPase, but inhibited it slightly. 5. Plots of 1/v vs. 1/[ATP] at various concentrations of spermine showed that spermine decreased the Km for ATP without changing the Vmax. 6. Plots of 1/v vs. 1/[ATP] at concentrations of K+ from 0.05 mM to 0.5 mM showed that K+ increased the Km for ATP with increase in the Vmax in the presence of 0.2 mM spermine similarly to that in the absence of spermine. The contradictory effects of spermine on this enzyme system suggest that the K+-dependent monophosphatase activity does not reflect the second half (the dephosphorylation step) of the Na+,K+-ATPase catalytic cycle.  相似文献   

11.
It has been shown that the desensibilization of the enzymic preparations of Na+, K+-ATPase by urea, DS-Na, digitonin and CHAPS reduces differently the amount of alpha beta-protomer in the enzymic preparations and the Hill coefficients of Na+ and K+. The factors (urea, DS-Na) which cause a more pronounced decrease in the amount of beta-protomer reduce the nH of Na+ for Na+, K+-ATPase and nH of K+ for Na+, K+-ATPase and K+-pNPPase to unit. The analysis of the effects of ATP and pNPP indicates that ATP has a protective effect only in the case of urea and DS-Na, but this effect is not exerted by pNPP (nonallosteric substrate). A conclusion is drawn that cooperative interactions of Na+, K+-ATPase from the brain with Na+ require more higher level of the oligomeric structure of enzyme than cooperative interactions with K+. At the same time these cooperative interactions in the both cases need subunits interactions in the protomer and interactions between cation sites with relatively high affinity.  相似文献   

12.
By regulating transmembrane Na+ and K+ concentrations and membrane potential, the Na+,K(+)-ATPase plays an important role in regulating cardiac, skeletal, and smooth muscle function. A high degree of amino acid sequence and structural identity characterizes the three Mr 100,000 Na+,K(+)-ATPase alpha subunit isoforms expressed in cardiac and skeletal muscle. Strikingly, vascular smooth muscle utilizes alternative RNA processing of the alpha-1 gene to express a structurally distinct Mr approximately 65,000 isoform, alpha 1-T (truncated). Analysis of both its mRNA and protein structure reveals that alpha-1-T represents a major, evolutionarily conserved, truncated Na+,K(+)-ATPase isoform expressed in vascular smooth muscle. This demonstrates an unexpected complexity in the regulation of vascular smooth muscle Na+,K(+)-ATPase gene expression and suggests that a structurally novel, truncated alpha subunit may play a role in vascular smooth muscle active ion transport.  相似文献   

13.
We have prepared human blood lymphocyte membrane vesicles of high purity in sufficient quantity for detailed enzyme analysis. This was made possible by the use of plateletpheresis residues, which contain human lymphocytes in amounts equivalent to thousands of milliliters of blood. The substrate specificity and the kinetics of the cofactor and substrate requirements of the human lymphocyte membrane Na+, K+-ATPase activity were characterized. The Na+, K+-ATPase did not hydrolyze ADP, AMP, ITP, UTP, GTP or TTP. The mean ATPase stimulated by optimal concentrations of Na+ and K+ (Na+, K+-ATPase) was 1.5 nmol of P(i) hydrolyzed, microgram protein-1, 30 min-1 (range 0.9-2.1). This activity was completely inhibited by the cardiac glycoside, ouabain. The K(m) for K+ was approximately 1.0 mM and the K(m) for Na+ was approximately 15 mM. Active Na+ and K+ transport and ouabain-sensitive ATP production increase when lymphocytes are stimulated by PHA. Na+, K+-ATPase activity must increase also to transduce energy for the transport of Na+ and K+. Some studies have reported that PHA stimulates the lymphocyte membrane ATPase directly. We did not observe stimulation of the membrane Na+, K+-ATPase when either lymphocytes or lymphocyte membranes were treated with mitogenic concentrations of PHA. Moreover, PHA did not enhance the reaction velocity of the Na+, K+-ATPase when studied at the K(m) for ATP, Na+, K+ OR Mg++, indicating that it does not alter the affinity of the enzyme for its substrate or cofactors. Thus, our data indicate that the increase in ATPase activity does not occur as a direct result of PHA action on the cell membrane.  相似文献   

14.
The method of organotypical cell culture was used. The long-term cell culture of cardiac embryonic tissue of 10-12-days old chicken was investigated. The effects of ouabaine, strophantin K and digoxin on the growth of cardiac tissue explant were measured. The ouabain concentration which stimulates activity of Na+, K+-ATPase as the signal transducer, was determined. It was equal to 10(-10) M. Strophantin K and digoxin stimulate growth of cardiac tissue in concentration equal to 10(-16) M and 10(-18) M, resp. The data obtained show that application of cardiac glycosides led to control of cardiac tissue growth in dose-dependent manner. We hypothesize that alpha3 isoform of Na+, K+-ATPase is a signal transducer that controls the cardiac cell metabolism and growth.  相似文献   

15.
The effect of thyroid hormones (T4, T3 and reverse T3) on rat renal Na+,K+-ATPase activity was investigated by a cytochemical technique. T3 caused stimulation of Na+,K+-ATPase activity in the renal medulla but not in the renal cortex. There was a peak in enzyme activity after cultured renal segments had been exposed to T3 for 11 min and this time of maximal stimulation did not vary with the concentration of T3. A rectilinear response in Na+,K+-ATPase activity was observed over T3 concentration range 10 pmol l-1 to 100 nmol l-1; at higher T3 concentrations, Na+,K+-ATPase activity was inhibited. The enzyme response was totally blocked by specific T3 antiserum. Addition of T4 and reverse T3 (100 fmol l-1 -1 mmol l-1) failed to stimulate Na+,K+-ATPase activity in any part of the kidney. Plasma (neat and diluted 1:10) stimulated the enzyme in parallel with the dose response curve and the stimulatory effect was abolished by prior addition of specific T3 antiserum.  相似文献   

16.
Munson KB  Lambrecht N  Sachs G 《Biochemistry》2000,39(11):2997-3004
The effects of site-directed mutagenesis were used to explore the role of residues in M4 on the apparent Ki of a selective, K+-competitive inhibitor of the gastric H+,K+ ATPase, SCH28080. A double transfection expression system is described, utilizing HEK293 cells and separate plasmids encoding the alpha and beta subunits of the H+,K+-ATPase. The wild-type enzyme gave specific activity (micromoles of Pi per hour per milligram of expressed H+,K+-ATPase protein), apparent Km for ammonium (a K+ surrogate), and apparent Ki for SCH28080 equal to the H+, K+-ATPase purified from hog gastric mucosa. Amino acids in the M4 transmembrane segment of the alpha subunit were selected from, and substituted with, the nonconserved residues in M4 of the Na+, K+-ATPase, which is insensitive to SCH28080. Most of the mutations produced competent enzyme with similar Km,app values for NH4+ and Ki,app for SCH28080. SCH28080 affinity was decreased 2-fold in M330V and 9-fold in both M334I and V337I without significant effect on Km,app. Hence methionine 334 and valine 337 participate in binding but are not part of the NH4+ site. Methionine 330 may be at the periphery of the inhibitor site, which must have minimum dimensions of approximately 16 x 8 x 5 A and be accessible from the lumen in the E2-P conformation. Multiple sequence alignments place the membrane surface near arginine 328, suggesting that the side chains of methionine 334 and valine 337, on one side of the M4 helix, project into a binding cavity within the membrane domain.  相似文献   

17.
This paper reports on the kinetic and thermodynamic parameters describing the interaction of selected digitalis derivatives with hog and guinea-pig cardiac (Na+ + K+)-ATPase (Na+/K+-transporting ATPase EC 3.6.1.37). 32 digitalis derivatives were characterized as to the values of the delta G0', delta G----not equal to, and delta G----not equal to quantities in their interaction with (Na+ + K+)-ATPase from hog cardiac muscle in the presence of ATP, Mg2+, Na+ and K+. Nine derivatives were additionally characterized as to the values of the delta H0', delta S0', delta H----not equal to, delta S----not equal to, delta H not equal to, and delta S not equal to quantities in their interaction with the hog enzyme promoted by ATP, Mg2+ and Na+ in the presence or absence of K+. The formation of the inhibitory complexes is in any case an endothermic, entropically driven process. The Gibbs energy barriers in the formation and dissociation of the complexes, delta G----not equal to and delta G----not equal to, are imposed by large, unfavourable delta H not equal to values. K+ decreases the delta G0' value by increasing the delta G----not equal to value more than the delta G----not equal to value. In comparison with hog (Na+ + K+)-ATPase, the interaction of three derivatives with guinea-pig cardiac enzyme in the presence of ATP, Mg2+, Na+ and K+ is characterized by lower delta G0' values caused by lower favourable delta S0' values, and is accompanied by lower delta G----not equal to values. The magnitude of the kinetic parameters and the characteristic of the thermodynamic quantities describing the interaction between various digitalis derivatives and (Na+ + K+)-ATPase, indicate the induction of substantial conformational changes in the enzyme protein. A large entropy gain in the enzyme protein, observed irrespective of enzyme origin and ligation, appears to be the common denominator of the inhibitory action of all digitalis derivatives studied, suggesting that the digitalis-elicited relaxation of high conformational energy (negentropy strain) of the enzyme protein is the thermodynamic essence of the reversible inactivation of (Na+ + K+)-ATPase.  相似文献   

18.
The chondrocyte is the cell responsible for the maintenance of the articular cartilage matrix. The negative charges of proteoglycans of the matrix draw cations, principally Na+, into the matrix to balance the negative charge distribution. The Na+,K(+)-ATPase is the plasma membrane enzyme that maintains the intracellular Na+ and K+ concentrations. The enzyme is composed of an alpha and a beta subunit, so far, 4 alpha and 3 beta isoforms have been identified in mammals. Chondrocytes are sensitive to their ionic and osmotic environment and are capable of adaptive responses to ionic environmental perturbations particularly changes to extracellular [Na+]. In this article we show that human fetal and adult chondrocytes express three alpha (alpha 1, alpha 2 and the neural form of alpha 3) and the three beta isoforms (beta 1, beta 2 and beta 3) of the Na+,K(+)-ATPase. The presence of multiple Na+,K(+)-ATPase isoforms in the plasma membrane of chondrocytes suggests a variety of kinetic properties that reflects a cartilage specific and very fine specialization in order to maintain the Na+/K+ gradients. Changes in the ionic and osmotic environment of chondrocytes occur in osteoarthritis and rheumatoid arthritis as result of tissue hydration and proteoglycan loss leading to a fall in tissue Na+ and K+ content. Although the expression levels and cellular distribution of the proteins tested do not vary, we detect changes in p-nitrophenylphosphatase activity "in situ" between control and pathological samples. This change in the sodium pump enzymatic activity suggests that the chondrocyte responds to these cationic environmental changes with a variation of the active isozyme types present in the plasma membrane.  相似文献   

19.
Rapid eye movement sleep deprivation is reported to increase Na+,K+-ATPase activity. This increase was shown earlier to be stimulated by norepinephrine acting on alpha1-adrenoceptor. The involvement of a subtype of alpha1-adrenoceptor and the possible molecular mechanism of action of norepinephrine in increasing the enzyme activity were investigated using receptor agonists and antagonists, as well as stimulants and blockers of signal transduction pathway. It was observed that incubation of the homogenate with cyclic AMP, forskolin, A23187 (a calcium ionophore), or calmodulin alone did not stimulate the Na+,K+-ATPase activity. However, although the spontaneous activity of the Na+,K+-ATPase was not affected by prazosin, WB4101, heparin, W13, or cyclosporin A alone, each of them could prevent the norepinephrine-stimulated increase in the enzyme activity. Based on these results and our previous findings, it is proposed that norepinephrine acted on alpha1A-adrenoceptor and increased intracellular calcium, which in the presence of calmodulin activated a calmodulin-dependent phosphatase, calcineurin. This calcineurin possibly dephosphorylated Na+,K+-ATPase and increased its activity. The physiological significance especially in relation to rapid eye movement sleep deprivation is discussed.  相似文献   

20.
F R Gorga 《Biochemistry》1985,24(24):6783-6788
N,N'-Dicyclohexylcarbodiimide (DCCD), a reagent that reacts with carboxyl groups under mild conditions, irreversibly inhibits (Na+,K+)-ATPase activity (measured by using 1 mM ATP) with a pseudo-first-order rate constant of 0.084 min-1 (0.25 mM DCCD and 37 degrees C). The partial activities of the enzyme, including (Na+,K+)-ATPase at 1 microM ATP, Na+-ATPase, and the formation of enzyme-acyl phosphate (E-P), decayed at about one-third the rate at which (Na+,K+)-ATPase at 1 mM ATP was lost. The formation of E-P from inorganic phosphate was unaffected by DCCD while K+-phosphatase activity decayed at the same rate as (Na+,K+)-ATPase measured at 1 mM ATP. The enzyme's substrates (i.e., sodium, potassium, magnesium, and ATP) all decreased the rate of DCCD inactivation of (Na+,K+)-ATPase activity measured at either 1 mM or 1 microM ATP. The concentration dependence of the protection afforded by each substrate is consistent with its binding at a catalytically relevant site. DCCD also causes cross-linking of the enzyme into species of very high molecular weight. This process occurs at about one-tenth the rate at which (Na+,K+)-ATPase activity measured at 1 mM ATP is lost, too slowly to be related to the loss of enzymatic activity. Labeling of the enzyme with [14C]DCCD shows the incorporation of approximately 1 mol of DCCD per mole of large subunit; however, the incorporation is independent of the loss of enzymatic activity. The results presented here suggest that (Na+,K+)-ATPase contains two carboxyl groups that are essential for catalytic activity, in addition to the previously known aspartate residue which is involved in formation of E-P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号