共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzyme activity, representing the sites of K+-stimulated p-nitrophenylphosphatase, a component of the sodium, potassium-stimulated-adenosinetriphosphatase system, has been localized in the somatosensory cortex of the rat brain. The reaction product is most obviously associated with fibers that are thought to be axons and dendrites. Large dendrite-like fibers appear to arise in layer 5 of the cortex and arborize in layers 1 through 4. Smaller, reactive fibers are found throughout the cortical layers. Neuron cell bodies did not exhibit substantial enzymatic activity. It did not appear that glia contributed significantly to the activity in cerebral cortex. 相似文献
2.
Guennoun-Lehmann S Fonseca JE Horisberger JD Rakowski RF 《The Journal of membrane biology》2007,216(2-3):107-116
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric
H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected
with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act
on Na,K-ATPase. 相似文献
3.
Pig kidney Na+,K+-ATPase. Primary structure and spatial organization 总被引:15,自引:0,他引:15
N N Ovchinnikov YuAModyanov N E Broude K E Petrukhin A V Grishin N M Arzamazova N A Aldanova G S Monastyrskaya E D Sverdlov 《FEBS letters》1986,201(2):237-245
cDNAs complementary to pig kidney mRNAs coding for alpha- and beta-subunits of Na+,K+-ATPase were cloned and sequenced. Selective tryptic hydrolysis of the alpha-subunit within the membrane-bound enzyme and tryptic hydrolysis of the immobilized isolated beta-subunit were also performed. The mature alpha- and beta-subunits contain 1016 and 302 amino acid residues, respectively. Structural data on the peptides from extramembrane regions of the alpha-subunit and on glycopeptides of the beta-subunit underlie a model for the transmembrane arrangement of Na+,K+-ATPase polypeptide chains. 相似文献
4.
Mechanism of the Na+, K+ pump. Protein structure and conformations of the pure (Na+ +K+)-ATPase 总被引:35,自引:0,他引:35
P L J?rgensen 《Biochimica et biophysica acta》1982,694(1):27-68
5.
6.
Thermal stabilities of Na+,K(+)-ATPase isozymes from the rat brain and kidney tissues are compared. It is established that heat treatment of Na+,K(+)-ATPase preparations from the brain decreases the high affinity component of the ouabain inhibition of the enzyme activity due to selective inactivation of alpha-isoform. Its higher thermal lability in comparison with alpha-isoform is confirmed. 相似文献
7.
Lopina OD 《Membrane & cell biology》2000,13(6):721-744
Structural organization of alpha- and beta-subunits of Na+,K+-ATPase in the membrane, the enzyme oligomeric structure, and mechanisms of ATP hydrolysis and cation transport are considered. The data on the structure of cation-binding sites and ion-conductive pathways of the pump are reviewed. The properties of isoforms of both subunits are described. Special attention was paid to the ATP modifying effect on Na+,K+-ATPase. To explain the rather complex dependence of the Na+,K+-ATPase activity on ATP concentration, a hypothesis is proposed, which is based on the assumption that the membrane contains the enzyme protomer exhibiting high affinity to ATP and an oligomer having low affinity to the nucleotide and characterized by positive cooperative interactions between subunits. Data on the Na+,K+-ATPase phosphorylation by protein kinases A and C are reviewed. 相似文献
8.
9.
Naomi Kraus-Friedmann L. Hummel A. Radominska-Pyrek J. M. Little R. Lester 《Molecular and cellular biochemistry》1982,44(3):173-1801
Summary In the perfused rat liver administration of glucagon was shown to result in a transiently increased uptake of K+, indicating the possible involvement of the Na+, K+-ATPase. Direct measurement of the activity of Na+, K+-ATPase revealed a two-fold stimulation of the enzyme by glucagon. The effect of glucagon on the activity of the enzyme was immediate. Simultaneously with the increase in the activity of the Na+, K+-ATPase, the activity of Mg2+-ATPase decreased. In order to evaluate whether the activation of the Na+, K+-ATPase by glucagon is related to the metabolic effects of the hormone, experimental conditions known to interfere with the activity of the enzyme were employed and glucagon stimulation of Ca2+-efflux, mitochondrial metabolism and gluconeogenesis were measured. K+-free perfusate, high K+ perfusate or ouabain interfered to varying degrees with the glucagon stimulation of these responses. The combination of K+-free perfusate and ouabain almost completely abolished the glucagon stimulation of all three parameters. These results demonstrate the glucagon stimulation of Na+, K+-ATPase and raise the possibility that the activation of the enzyme by glucagon might be a necessary link for the manifestation of its metabolic effects. 相似文献
10.
Na+,K+-ATPase, the enzymatic moiety that operates as the electrogenic sodium-potassium pump of the cell plasma membrane, is inhibited by cardiac glycosides, and this specific interaction of a drug with an enzyme has been considered to be responsible for digitalis-induced vascular smooth muscle contraction. Although studies aimed at localization, isolation, and measurement of the Na+,K+-ATPase activity (or Na+, K- pump activity) indicate its presence in vascular smooth muscle sarcolemma, its characterization as the putative vasopressor receptor site for cardiac glycosides has depended on pharmacological studies of vascular response in vivo and on isolated artery contractile responses in vitro. More recently, radioligand-binding studies using [3H]ouabain have aided in the characterization of drug-enzyme interaction. Such studies indicate that in canine superior mesenteric artery (SMA), Na+,K+-ATPase is the only specific site of interaction of ouabain with resultant inhibition of the enzyme. The characteristics of [3H]ouabain binding to this site are similar to those of purified or partially purified Na+,K+-ATPase of other tissues, which suggests that if Na+,K+-ATPase inhibition is causally related to digitalis-mediated effects on vascular smooth muscle contraction, then therapeutic concentrations of cardiac glycosides could act to cause SMA vasoconstriction. The additional finding from radioligand-binding studies that Na+,K+-ATPase exists in much smaller quantities (density of sites per cell) in SMA than in either heart or kidney may have implications concerning its physiological, biochemical or pharmacological role in modulating vascular muscle tone. 相似文献
11.
Location of signal sequences for membrane insertion of the Na+,K+-ATPase alpha subunit. 总被引:2,自引:0,他引:2
下载免费PDF全文

To study the membrane insertion of the Na+,K+-ATPase (EC 3.6.1.37) alpha subunit with six to eight transmembrane segments, mRNAs encoding the entire alpha subunit and its four different domains were prepared and translated in rabbit reticulocyte lysate with rough microsomal membranes. On the basis of the resistance of the membrane-inserted products to alkali extraction and the failure to insert the translation products into N-ethylmaleimide-treated membranes, it is suggested that at least two signal sequences are contained within the four transmembrane segments from the amino terminus of the alpha subunit. 相似文献
12.
Chronic hypertension is characterized by a persistent increase in vascular tone. Sodium-rich diets promote hypertension; however, the underlying molecular mechanisms are not fully understood. Variations in the sodium content of the diet, through hormonal mediators such as dopamine and angiotensin II, modulate renal tubule Na+,K+-ATPase activity. Stimulation of Na+,K+-ATPase activity increases sodium transport across the renal proximal tubule epithelia, promoting Na+ retention, whereas inhibited Na+,K+-ATPase activity decreases sodium transport, and thereby natriuresis. Diets rich in sodium also enhance the release of adrenal endogenous ouabain-like compounds (OLC), which inhibit Na+,K+-ATPase activity, resulting in increased intracellular Na+ and Ca2+ concentrations in vascular smooth muscle cells, thus increasing the vascular tone, with a corresponding increase in blood pressure. The mechanisms by which these homeostatic processes are integrated in response to salt intake are complex and not completely elucidated. However, recent scientific findings provide new insights that may offer additional avenues to further explore molecular mechanisms related to normal physiology and pathophysiology of various forms of hypertension (i.e. salt-induced). Consequently, new strategies for the development of improved therapeutics and medical management of hypertension are anticipated. 相似文献
13.
Experimental data on the ion electrogenic transport by Na+,K+-ATPase available in the literature are analyzed. Special attention is paid to the measurements of unsteady-state electric currents initiated by alternating voltage or rapid introduction of the substrate. In the final part, a physical model of the Na+,K+-ATPase functioning is discussed. According to this model, active transport is carried out by opening and closing of the access channels used for the sodium and potassium exchange between solutions on either side of the membrane. The model explains most of the experimental data, although some details (the channel size, rates of individual transport steps) need further refinement. 相似文献
14.
T T Salum M K Tsil'mer T E Kullisaar T E Vikhalemm L Ia Tiakhepyld 《Ukrainski? biokhimicheski? zhurnal》1988,60(2):47-52
It has been shown that the desensibilization of the enzymic preparations of Na+, K+-ATPase by urea, DS-Na, digitonin and CHAPS reduces differently the amount of alpha beta-protomer in the enzymic preparations and the Hill coefficients of Na+ and K+. The factors (urea, DS-Na) which cause a more pronounced decrease in the amount of beta-protomer reduce the nH of Na+ for Na+, K+-ATPase and nH of K+ for Na+, K+-ATPase and K+-pNPPase to unit. The analysis of the effects of ATP and pNPP indicates that ATP has a protective effect only in the case of urea and DS-Na, but this effect is not exerted by pNPP (nonallosteric substrate). A conclusion is drawn that cooperative interactions of Na+, K+-ATPase from the brain with Na+ require more higher level of the oligomeric structure of enzyme than cooperative interactions with K+. At the same time these cooperative interactions in the both cases need subunits interactions in the protomer and interactions between cation sites with relatively high affinity. 相似文献
15.
16.
Kaplia AA Khizhniak SV Kudriavtseva AG Papageorgakopulu N Osinskiĭ DS 《Ukrainski? biokhimicheski? zhurnal》2006,78(1):29-42
A current state of researches on mechanisms of ion homeostasis regulation in the specific conditions of the uncontrolled malignant tumor growth (mainly in carcinomas) concerning the contribution of Na+,K+-ATPase, plasma membrane and sarco(endo)plasmic reticulum Ca2+-ATPases has been reviewed. Particular attention has been focused on the molecular and biochemical links providing the redistribution of the transporting ATPases isozyme pattern for the regulatory requirements of the cell signaling pathways at stable proliferation and viability in malignancy. 相似文献
17.
ATPase activity was localized by means of Wachstein-Meisel's method in rat sciatic nerve fibers. Using controls with ouabain, the presence of alpha + (neuronal) Na+, K+-ATPase was examined. The enzyme occurs in the ATPase reaction of the myelin-forming membranes, axoplasm and Schwann cell cytoplasm. Its presence in the Schwann cell plasma membrane is only admittable. The ATPase activity of the compact myelin and axolemma was exclusively of alpha + type of Na+, K+-ATPase. 相似文献
18.
N M Arzamazova E A Aristarkhova G I Shafieva I V Nazimov N A Aldanova 《Bioorganicheskaia khimiia》1985,11(12):1598-1606
The selective tryptic digestion of the native membrane-bound enzyme was carried out under conditions that provide the extensive hydrolysis of hydrophilic regions of the alpha-subunit into small fragments and allow to preserve the integrity of the beta-subunit. Twenty-seven water-soluble peptides comprising approximately 40% of the total polypeptide chain were isolated by HPLC and their complete or partial amino acid sequence was determined. It led to general outline of the structural organisation of the alpha-subunit hydrophilic regions exposed from membrane. The information thus obtained was used in synthesis of specific oligonucleotide probes. 相似文献
19.
Previous studies in expression systems have found different ion activation of the Na+/K+-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used
to quantify Na+,K+-ATPase activity, and the Na+ affinity of Na+,K+-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The
Na+ affinity was higher (K
m lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with
glycolytic muscle. Na+,K+-ATPase isoform analysis implied that heterodimers containing the β1 isoform have a higher Na+ affinity than heterodimers containing the β2 isoform. Immunoprecipitation experiments demonstrated that dimers with α1 are responsible for approximately 36% of the total Na,K-ATPase activity. Selective inhibition of the α2 isoform with ouabain suggested that heterodimers containing the α1 isoform have a higher Na+ affinity than heterodimers containing the α2 isoform. The estimated K
m values for Na+ are 4.0, 5.5, 7.5 and 13 mM for α1β1, α2β1, α1β2 and α2β2, respectively. The affinity differences and isoform distributions imply that the degree of activation of Na+,K+-ATPase at physiological Na+ concentrations differs between muscles (oxidative and glycolytic) and between subcellular membrane domains with different
isoform compositions. These differences may have consequences for ion balance across the muscle membrane. 相似文献
20.
Gupta SP Bagaria P Kumaran S 《Journal of enzyme inhibition and medicinal chemistry》2004,19(5):389-393
A quantitative structure-activity relationship (QSAR) study has been made on a new series of digitalis-like Na+,K+-ATPase inhibitors in which the guanylhydrazone group has been replaced by an aminoalkyloxime group. The correlations obtained have shown that the oxime moiety, primary amine group, overall size, and polarizability of the new type of substituents are higly beneficial to the Na+,K+-ATPase inhibition potency of the compounds and that their effect can be quantitatively assessed. The study also showed that the inotropic activity of the compounds is very well correlated with their Na+,K+-ATPase inhibition potency. 相似文献