首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immediate effects of externally added alcohols on CO2 production and O2 consumption of suspensions of washed, aerated baker's yeast were studied by stopped-flow membrane inlet mass spectrometry. Glucose-supported fermentation was progressively inhibited by increasing ethanol concentration (0-20%, v/v). The inhibition by ethanol was quite different from that observed for acetaldehyde; thus it is unlikely that toxicity of the latter can account for the observed effects. For five different alkanols (methanol, ethanol, 1-propanol, 2-propanol and 1-butanol) increasing inhibition of anaerobic fermentation was correlated with increased partition coefficients into a hydrophobic milieu. This suggests that the action of ethanol is primarily located at a hydrophobic site, possibly at a membrane. Results for respiratory activities were not as definite as for those for anaerobic metabolism because some alkanols act as respiratory substrates as well as giving inhibitory effects.  相似文献   

2.
With P-glycoprotein (P-gp) continuing to have prominence among the ABC transporters for its ability to remove various xenobiotics from many cell types, accurate and robust methods for estimating the exposure of drug, carcinogen, toxicant, pesticide, and even some endobiotics to tissues and cells affected by P-gp are valuable. The inhibition of P-gp active transport of molecules, therefore, has often been quantified by concentration dependence of inhibitor effect on fluorescent substrate marker efflux mediated by this enzyme, with much evidence indicating two asymmetric yet interdependent substrate binding sites on P-gp. A uniqueness in the pair of binding sites could result in distinct effects of an inhibitor on the transport of certain substrates, thus leading to differences in fluorescent substrate responsiveness or sensitivity. Seven different fluorescent substrates of P-gp were quantitatively tested for their responsiveness to inhibition by a wide range of P-gp substrates/inhibitors. Interesting differences were observed in the IC(50) values caused by each of the inhibitors employed, in part exemplified by DNR and LDS being generally more sensitive to inhibition effects than any other fluorescent marker. However, no clear trend emerged to designate any fluorochrome marker as the most or least responsive to inhibition. Furthermore, LDS is more sensitive to some P-gp inhibitors than the substrate marker DNR, generally the most responsive. These results support the assertion of two unequal substrate binding sites that are allosterically dependent on each other. Therefore, an inhibitor that favors binding to the site opposite from that favored by a particular marker may have significant transduced effects through the protein between the two binding sites. Nevertheless, although either DNR or LDS is generally the fluorescent substrate most responsive to inhibition, there may be other substrates yet even more sensitive.  相似文献   

3.
Chromaffin cells from bovine adrenal medulla were examined for the presence of a specific prenylcysteine carboxymethyltransferase by using N-acetyl-S-farnesyl-L-cysteine and N-acetyl-S-geranylgeranyl-L-cysteine as artificial substrates and a crude cell homogenate as the enzyme source. From Michaelis-Menten kinetics the following constants were calculated: K(m) 90 microM and V(max) 3 pmol/min per mg proteins for N-acetyl-S-farnesyl-L-cysteine; K(m) 52 microM and V(max) 3 pmol/min per mg proteins for N-acetyl-S-geranylgeranyl-L-cysteine. Both substrates were methylated to an optimal extent at the pH range 7. 4-8.0. Methylation activity increased linearly up to 20 min incubation time and was dose dependent up to at least 160 microg of protein. Sinefungin and S-adenosylhomocysteine both caused pronounced inhibition, as also to a lesser extent did farnesylthioacetic acid, deoxymethylthioadenosine and 3-deaza-adenosine. Effector studies showed that the methyltransferase activity varied depending on the concentration and chemical nature of the cations present. Monovalent cations were slightly stimulatory, while divalent metallic ions displayed diverging inhibitory effects. The inhibition by cations was validated by the stimulatory effect of the chelators EDTA and EGTA. Sulphydryl reagents inhibited methylation but to different degrees: Hg(2+)-ions: 100%, N-ethylmaleimide: 30%, dithiothreitol: 0% and mono-iodoacetate: 20%. Due to the hydrophobicity of the substrates dimethyl sulfoxide had to be included in the incubation mixture (<4%; still moderate inhibition at more elevated concentrations). The detergents tested affected the methyltransferase activity to a varying degree. The membrane bound character of the methyltransferase was confirmed.  相似文献   

4.
Peptide substrates sensitive for a certain protein kinase could be important for new-drug development and to understand the mechanism of diseases. Rho-associated kinase (Rho-kinase/ROCK) is a serine/threonine kinase, and plays an important part in cardiovascular disease, migration and invasion of tumor cells, and in neurological disorders. The purpose of this study was to find substrates with high affinity and sensitivity for ROCK2. We synthesized 136 peptide substrates from protein substrates for ROCK2 with different lengths and charged peptides. Incorporation of (32)P [counts per minute (CPM)] for each peptide substrate was determined by the radiolabel assay using [γ-(32)P]ATP. When the top five peptide substrates showing high CPMs (R4, R22, R133, R134, and R135) were phosphorylated by other enzymes (PKA, PKCα, and ERK1), R22, R133, and R135 displayed the highest CPM level for ROCK2 compared with other enzymes, whereas R4 and R134 showed similar CPM levels for ROCK2 and PKCα. We hypothesize that R22, R133, and R135 can be useful peptide substrates for ROCK2.  相似文献   

5.
Nine isolates of the entomopathogenic deuteromycetes Metarhizium anisopliae, Beauveria bassiana, Verticillium lecanii, Nomuraea rileyi, and Aschersonia aleyrodis produced basic (pI greater than 7.0) chymoelastases that possessed extended binding sites, comprising at least four or five subsites, with preference for hydrophobic residues at the primary binding site. Most isolates also produced additional acidic enzymes with similar specificities against ester and amide substrates but which lacked activity against elastin. Both acidic and basic enzymes degraded high protein azure or locust cuticle and, as shown by inhibition studies, possessed essential serine and histidine residues in the active site. In spite of similarities in catalytic properties antibodies generated against a Metarhizium chymoelastase cross-reacted only with enzymes from two (out of four) Metarhizium isolates; enzymes from all other isolates did not cross-react. Two isolates of Metarhizium produced a third class of protease which degraded Bz-AA-AA-Arg-NA substrates (AA, various amino acids) and hide protein azure. Analogous peptidases were produced by other isolates but they were specific for Bz-Phe-Val-Arg-NA and showed less sensitivity to trypsin inhibitors. The possible significance to pathology of the presence of diverse yet similar protease forms in five genera of entomopathogens is discussed.  相似文献   

6.
R Feng  X Zhou  PM Or  JY Ma  XS Tan  J Fu  C Ma  JG Shi  CT Che  Y Wang  JH Yeung 《Phytomedicine》2012,19(12):1125-1133
Halenia elliptica D. Don is a Tibetan herb and medicinal preparations containing Halenia elliptica have been commonly used for the treatment of hepatitis B virus infection in China. The metabolism of 1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1) to its metabolites is mediated through cytochrome P450 enzymes. This study aimed to investigate the herb-drug interaction potential of HM-1 by studying its effects on the metabolism of model probe substrates of five major CYP450 isoforms in human liver microsomes. HM-1 showed moderate inhibitory effects on CYP1A2 (IC(50)=1.06μM) and CYP2C9 (IC(50)=3.89μM), minimal inhibition on CYP3A4 (IC(20)=11.94μM), but no inhibition on model CYP2D6 (dextromethorphan) and CYP2E1 (chlorzoxazone) probe substrates. Inhibition kinetic studies showed that the K(i) values of HM-1 on CYP1A2, CYP2C9 and CYP3A4 were 5.12μM, 2.00μM and 95.03μM, respectively. HM-1 competitively inhibited testosterone 6β-hydroxylation (CYP3A4) but displayed mixed type inhibitions for phenacetin O-deethylation (CYP1A2) and tolbutamide 4-hydroxylation (CYP2C9). Molecular docking study confirmed the inhibition modes of HM-1 on these human CYP isoforms.  相似文献   

7.
Examination of the downstream mediators responsible for inhibition of mitochondrial respiration by dopamine (DA) was investigated. Consistent with findings reported by others, exposure of rat brain mitochondria to 0.5 mm DA for 15 min at 30 degrees C inhibited pyruvate/glutamate/malate-supported state-3 respiration by 20%. Inhibition was prevented in the presence of pargyline and clorgyline demonstrating that mitochondrial inhibition arose from products formed following MAO metabolism and could include hydrogen peroxide (H(2) O(2) ), hydroxyl radical, oxidized glutathione (GSSG) or glutathione-protein mixed disulfides (PrSSG). As with DA, direct incubation of intact mitochondria with H(2) O(2) (100 microm) significantly inhibited state-3 respiration. In contrast, incubation with GSSG (1 mm) had no effect on O(2) consumption. Exposure of mitochondria to 1 mm GSSG resulted in a 3.3-fold increase in PrSSG formation compared with 1.4- and 1.5-fold increases in the presence of 100 microm H(2) O(2) or 0.5 mm DA, respectively, suggesting a dissociation between PrSSG formation and effects on respiration. The lack of inhibition of respiration by GSSG could not be accounted for by inadequate delivery of GSSG into mitochondria as increases in PrSSG levels in both membrane-bound (2-fold) and intramatrix (3.5-fold) protein compartments were observed. Furthermore, GSSG was without effect on electron transport chain activities in freeze-thawed brain mitochondria or in pig heart electron transport particles (ETP). In contrast, H(2) O(2) showed differential effects on inhibition of respiration supported by different substrates with a sensitivity of succinate > pyruvate/malate > glutamate/malate. NADH oxidase and succinate oxidase activities in freeze-thawed mitochondria were inhibited with IC(50) approximately 2-3-fold higher than in intact mitochondria. ETPs, however, were relatively insensitive to H(2) O(2). Co-administration of desferrioxamine with H(2) O(2) had no effect on complex I-associated inhibition in intact mitochondria, but attenuated inhibition of rotenone-sensitive NADH oxidase activity by 70% in freeze-thawed mitochondria. The results show that DA-associated inhibition of respiration is dependent on MAO and that H(2) O(2) and its downstream hydroxyl radical rather than increased GSSG and subsequent PrSSG formation mediate the effects.  相似文献   

8.
The effects of polyamines on the oligomeric forms of protein phosphatase-1 (1G), protein phosphatase-2A (2A0, 2A1 and 2A2) and their free catalytic subunits (1C and 2AC) has been studied using homogeneous enzymes isolated from rabbit skeletal muscle. Spermine increased the activity of protein phosphatase-2A towards eight of nine substrates tested. Half-maximal activation was observed at 0.2 mM with optimal effects at 1-2 mM. Above 2 mM, spermine became inhibitory. The most impressive activation of protein phosphatase-2A was obtained with glycogen synthase, especially when phosphorylated at sites-3 (8-15-fold with protein phosphatase-2A1) and phenylalanine hydroxylase (6-7-fold with protein phosphatase-2A1) as substrates. Activation of protein phosphatases 2A0, 2A1 and 2A2 was greater than that observed with 2AC. Spermine was a more potent activator than spermidine, while putrescine had only a small effect. Qualitatively similar results were obtained with five other substrates, although maximal activation was much less (1.3-3-fold with protein phosphatase-2A1). The rate of dephosphorylation of glycogen phosphorylase was decreased by spermine, inhibition being more pronounced with protein phosphatase-2AC than with 2A0, 2A1 and 2A2. Spermine (I50 = 0.1 mM with protein phosphatase-2AC) was a more potent inhibitor than spermidine (I50 = 0.9 mM) or putrescine (I50 = 8 mM). Partially purified preparations of protein phosphatases-2A0, 2A1 and 2A2 from from rat liver were affected by spermine in a similar manner to the homogeneous enzymes from rabbit skeletal muscle. Spermine did not activate protein phosphatase-1 to the same extent as protein phosphatase-2A. Greatest stimulation (2.5-fold) was again observed with glycogen synthase labelled in sites-3, with half-maximal activation at 0.2 mM and optimal effects at 1-2 mM spermine. Spermine was a much more effective stimulator than spermidine, while putrescine was ineffective. Very similar results were obtained with protein phosphatases 1G and 1C. With four other substrates maximal activation by spermine was less than 1.5-fold, while the dephosphorylation of glycogen synthase (labelled in site-2), phosphorylase kinase, pyruvate kinase and glycogen phosphorylase were inhibited. Spermine (I50 = 0.04 mM) was a more potent inhibitor of the dephosphorylation of glycogen phosphorylase than spermidine (I50 = 0.9 mM) or putrescine (I50 = 9 mM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
C Bohman  S Eriksson 《Biochemistry》1988,27(12):4258-4265
Deoxycytidine kinase from human leukemic spleen has been purified 6000-fold to apparent homogeneity with an overall yield of 10%. The purification was achieved by using DEAE chromatography, hydroxylapatite chromatography, and affinity chromatography on dTTP-Sepharose. Only one form of deoxycytidine kinase activity was found during all the chromatographic procedures. The subunit molecular mass, as judged by sodium dodecyl sulfate--polyacrylamide gel electrophoresis, was 30 kilodaltons. The pure enzyme phosphorylates deoxycytidine, deoxyadenosine, and deoxyguanosine, demonstrating for the first time that the same enzyme molecule has the capacity to use these three nucleosides as substrates. The apparent molecular weight of the active enzyme, determined by gel filtration and glycerol gradient centrifugation, was 60,000. Thus, the active form of human deoxycytidine kinase is a dimer. The kinetic behavior of pure human deoxycytidine kinase was studied in detail with regard to four different phosphate acceptors and two different phosphate donors. The apparent Km values were 1, 20, 150, and 120 microM for deoxycytidine, arabinosylcytosine, deoxyguanosine, and deoxyadenosine, respectively. The Vmax values were 5-fold higher for the purine nucleosides as compared to the pyrimidine substrates. We observe competitive inhibition of the phosphorylation of one substrate by the presence of either of the three other substrates, but the apparent Ki values differed greatly from the corresponding Km values, suggesting the existence of allosteric effects. The double-reciprocal plots for ATP-MgCl2 as phosphate donor were convex, indicating negative cooperative effects. In contrast, plots with varying dTTP-MgCl2 concentration as phosphate donor were linear with an apparent Km of 2 microM. The enzyme activity was strongly inhibited by dCTP, in a noncompetitive way with deoxycytidine and in a competitive way with ATP-MgCl2.  相似文献   

10.

Background

The mTOR inhibitor rapamycin has anti-tumor activity across a variety of human cancers, including hepatocellular carcinoma. However, resistance to its growth inhibitory effects is common. We hypothesized that hepatic cell lines with varying rapamycin responsiveness would show common characteristics accounting for resistance to the drug.

Methodology/Principal Findings

We profiled a total of 13 cell lines for rapamycin-induced growth inhibition. The non-tumorigenic rat liver epithelial cell line WB-F344 was highly sensitive while the tumorigenic WB311 cell line, originally derived from the WB-F344 line, was highly resistant. The other 11 cell lines showed a wide range of sensitivities. Rapamycin induced inhibition of cyclin E–dependent kinase activity in some cell lines, but the ability to do so did not correlate with sensitivity. Inhibition of cyclin E–dependent kinase activity was related to incorporation of p27Kip1 into cyclin E–containing complexes in some but not all cell lines. Similarly, sensitivity of global protein synthesis to rapamycin did not correlate with its anti-proliferative effect. However, rapamycin potently inhibited phosphorylation of two key substrates, ribosomal protein S6 and 4E-BP1, in all cases, indicating that the locus of rapamycin resistance was downstream from inhibition of mTOR Complex 1. Microarray analysis did not disclose a unifying mechanism for rapamycin resistance, although the glycolytic pathway was downregulated in all four cell lines studied.

Conclusions/Significance

We conclude that the mechanisms of rapamycin resistance in hepatic cells involve alterations of signaling downstream from mTOR and that the mechanisms are highly heterogeneous, thus predicting that maintaining or promoting sensitivity will be highly challenging.  相似文献   

11.
Acidic synthetic peptides corresponding to segments of several nonhomologous proteins (hirudin, residues 54-65; heparin cofactor II, residues 54-75; and fibrinogen, residues 410-427 of the gamma B-chain) inhibit thrombin's cleavage of fibrinogen without blocking the enzyme's active site. Here, we examined effects of these peptides on thrombin's cleavage of protein C and small peptides. Activation of protein C by thrombin in the absence of calcium was inhibited by all of the peptides. Maximal inhibition was 60%, and no greater inhibition was produced by higher peptide concentrations. This differed from progressive inhibition of protein C activation by increasing peptide concentrations in the presence of thrombomodulin and calcium. Potencies of the peptides were in the order hirudin-(54-65) greater than heparin cofactor II-(54-75) greater than gamma B-chain-(410-427). Sulfation of the tyrosine residue in hirudin-(54-65) increased its potency about 10-fold, similar to changes in anticlotting activity. The peptides were activators rather than inhibitors of the cleavage of small chromogenic substrates. In the presence of the peptides, the affinity of thrombin for the substrates S-2366 (pyro-Glu-Pro-Arg-4-nitroanilide), Chromozyme TH (tosyl-Gly-Pro-Arg-4-nitroanilide), and S-2251 (D-Val-Leu-Lys-4-nitroanilide) increased 1.5-2-fold with little change in the Vmax of substrate cleavage. Potencies of peptides in these allosteric effects on thrombin was in the same order as for their other effects. The similar actions of these nonhomologous peptides, which are believed to bind to thrombin's anion-binding exosite, suggest that binding of any peptide to this site exerts the same allosteric effect on thrombin's active site. Interactions of these peptides with thrombin may serve as models for regulation of thrombin's interactions with natural substrates and inhibitors.  相似文献   

12.
These studies investigated the effects of various serine proteinase inhibitors and substrates on the TCDD-binding capacity of the rat hepatic Ah receptor. TCDD binding to the Ah receptor was inhibited by serine proteinase inhibitors phenylmethylsulfonyl fluoride (PMSF), tosyl-lysine chloromethyl ketone (TosLysCH2Cl), tosylamide-phenylethyl chloromethyl ketone (TosPheCH2Cl) and substrates tosyl-L-arginine methyl ester (TosArgOMe) and D-tryptophan methyl ester (TrpOMe). The order of potency was TosPheCH2Cl greater than TosLysCH2Cl much greater than PMSF approximately equal to TosArgOMe approximately equal to TrpOMe. Reactivity of the chloromethyl ketones with sulfhydryl groups was suggested by their steep inhibition curves above the concentration of nonprotein sulfhydryl groups, and the partial mitigation of inhibition by 1 mM dithiothreitol. Inhibition by these reagents was irreversible, while that by TosArgOMe and TrpOMe was completely reversible by gel filtration. The mechanism of inhibition by TosArgOMe and TrpOMe was formally competitive, with inhibition constants similar to those reported in steroid hormone receptor systems. Neither inhibitors nor substrates displaced previously bound TCDD.  相似文献   

13.
The hypoglycemic agent 3-mercaptopicolinic acid inhibits gluconeogenesis from lactate by isolated, perfused livers from fasted rats and guinea pigs. A 3-mercaptopicolinate concentration of 50 muM caused a sharp decrease in glucose synthesis, with virtually complete inhibition at 100 muM. This inhibitory effect was reversed completely when 3-mercaptopicolinate was removed and the rate of glucose synthesis returned to normal values within 2 min. Oxygen consumption was not altered, even at the highest concentration of inhibitor. Gluconeogenesis from glycerol by guinea pig liver was blocked completely by 100 muM 3-mercaptopicolinate but was inhibited only partially in rat liver. After removal of the inhibitor glucose synthesis returned to levels higher than noted before the addition of this compound. The formation of P-enolpyruvate bu isolated guinea pig liver mitochondria metabolizing alpha-ketoglutarate (State 3) was inhibited markedly by 3-mercaptopicolinate, but malate conversion to P-enolpyruvate was considerably less sensitive. Kinetic studies with purified P-enolpyruvate carboxykinase from rat liver cytosol indicate that 3-mercaptopicolinate is a noncompetitive inhibitor with respect to both oxalacetate and MnGTP2-, and that simulataeous saturation with both substrates does not diminish this inhibition. The inhibitory effects of 3-mercaptopicolinate occur primarily by decreasing the rate of product formation while having relatively minor effects on the apparent Michaelis constants for substrates. Inhibition constants for slope and intercept effects ranged from 3 to 9 muM 3-mercaptopicolinate, and the inhibition patterns were dependent on the concentration of free Mn2+ present. Comparison of the inhibition constants with the observed inhibition of gluconeogenesis in livers perfused with 3-mercaptopicolinate supports the contention that P-enolpyruvate carboxykinase is the site of action of this inhibitor. The possibility that 3-mercaptopicolinate inhibition occurs by binding either free or bound manganese was eliminated by determination of the dissociation constant of 0.51 mM for the manganese-3-mercaptopicolinate complex. In addition, no tightly bound, slowly exchanging metal was bound to purified enzyme protein. These results suggest that 3-mercaptopicolinate inhibits by the removal of a tightly bound, rapidly exchanging metal ion other than Mn2+.  相似文献   

14.
Enzymatic excision of radiation-induced lesions from DNA model compounds.   总被引:3,自引:0,他引:3  
Dinucleoside monophosphates in which the 5' nucleoside contained a radiation-modified base were tested as substrates to bovine spleen phosphodiesterase (SPD) and snake venom phosphodiesterase. The radiation-modified bases included thymine glycols, 5-hydroxymethyluracil, 8-hydroxyguanine, and a formamido remnant of thymine. The lesions had widely different effects on diesterase action, varying from little inhibition, as in the case of digestion of dT*pA by SPD, where T* is the hydroxymethyluracil modification, to severe inhibition, as in the case of digestion of dG*pC by SPD, where G* is the 8-hydroxyguanine modification.  相似文献   

15.
The steady-state kinetic mechanism of vitamin K-dependent carboxylase from calf liver has been investigated by initial-velocity measurements with varying concentrations of two carboxylase substrates and constant, nonsaturating concentrations of the other two substrates. With all combinations of the varied substrates tested linear kinetics were obtained with lines intersecting on the left side of the 1/v axis in double-reciprocal plots. Thus the carboxylase has a sequential reaction mechanism which includes the quinternary complex of the enzyme with its four substrates. A mechanism with the ordered steady-state addition of all substrates to the enzyme accords well with the results. A totally random mechanism was excluded but the alternative possibility remained that part of the substrates are added in a rapid-equilibrium random reaction. Experiments with saturating constant concentrations of sodium bicarbonate and varying concentrations of the other substrates suggest that bicarbonate (CO2) is either the first or, more probably, the last substrate bound to the enzyme.  相似文献   

16.
Battaglia LL  Sharitz RR 《Oecologia》2006,150(1):108-118
Leaf litter and other organic resources returned to the soil are important regulators of ecological processes in forest ecosystems, and their ecological impacts may be strongly influenced both by their quality and by interactions between coexisting resource types. To date, most studies on effects of resource identity and mixing have only involved leaf litter, despite the fact that other resource types constitute a major input to the soil. We investigated how quality and heterogeneity of organic substrates found in boreal forests affects the activity and community structure of soil microbes, and plant growth. Six organic substrates (wood, charcoal, berries, sporocarps, vertebrate faeces and leaf litter) were added singly or in mixtures of two, three and six resource types to pots containing forest soil (with or without tree seedlings of Betula pendula Roth). The largest positive effects of single substrates on microbial basal respiration (BR), substrate-induced respiration (SIR) and microbial metabolic quotient (qCO2) were found for nutrient-rich substrates (faeces and sporocarps) or substrates with high sugar-content (berries). Mixing of substrates had no effect on BR or SIR, but decreased qCO2 or altered the microbial community structure for specific combinations of substrates. In contrast to the niche complementarity hypothesis, microbial catabolic diversity was not stimulated by greater diversity of resources. Seedling growth responses to single substrates were neutral or negative; the inhibition of growth probably resulted largely from microbial competition for nutrients. Substrate mixing enhanced seedling nutrient-uptake and growth for all mixtures containing sporocarps and leaf litter. Overall, plants responded more strongly to resource heterogeneity than microbes, and synergistic effects only occurred when nutrient-rich substrates were present within the substrate mixtures. In particular, our results demonstrate a role for complex and non-additive interactions among previously overlooked resource types returned to the soil in influencing ecosystem functions such as nutrient cycling and plant productivity.  相似文献   

17.
Hardy LW  Kirsch JF 《Biochemistry》1984,23(6):1282-1287
The solvent kinetic isotope effects (SKIE's) on k(cat) (D(V)) and on k(cat/Km[D(V/K)] were determined for the Bacillus cereus beta-lactamase I catalyzed hydrolysis of five substrates that have values of k(cat)/K(m) varying over the range (0.014-46.3) X 10(6)M(-1) s(-1) and of k(cat) between 0.5 and 2019 s(-1). The variation of D(V/K) was only from 1.06 to 1.25 among these compounds and that in D(V) was from 1.50 to 2.16. These results require that Dk(1), the SKIE on the enzyme-substrate association rate constant, and D(k-1/k2), that on the partition ratio of the ES complex, both be near 1. The larger SKIE observed on D(V) requires that an exchangeable proton be in flight for either or both the acylation and the deacylation reaction. The pH dependence of the values k(cat)/K(m) for three substrates shows identical pK(a)s of 5.5. and 8.4. This identity combined with the fact that only one of these three substrates is kinetically "sticky" proves that the substrates can combine productively with only one protonic form of the enzyme. There is considerable substrate variation in the pK(a) values of k(cat) observed vs. pH profiles; the inflection points for all substrates studied are at pH values more extreme than are observed in the pH profiles for k(cat)/K(m).  相似文献   

18.
The penicillin-binding proteins (PBPs) are ubiquitous bacterial enzymes involved in cell wall biosynthesis, and are the targets of the beta-lactam antibiotics. The low molecular mass Neisseria gonorrhoeae PBP 4 (NG PBP 4) is the fourth PBP revealed in the gonococcal genome. NG PBP 4 was cloned, overexpressed, purified, and characterized for beta-lactam binding, DD-carboxypeptidase activity, acyl-donor substrate specificity, transpeptidase activity, inhibition by a number of active site directed reagents, and pH profile. NG PBP 4 was efficiently acylated by penicillin (30,000 m-1.s-1). Against a set of five alpha- and epsilon-substituted l-Lys-D-Ala-D-Ala substrates, NG PBP 4 exhibited wide variation in specificity with a preference for N epsilon-acylated substrates, suggesting a possible preference for crosslinked pentapeptide substrates in the cell wall. Substrates with an N epsilon-Cbz group demonstrated pronounced substrate inhibition. NG PBP 4 showed 30-fold higher activity against the depsipeptide Lac-ester substrate than against the analogous peptide substrate, an indication that k2 (acylation) is rate determining for carboxypeptidase activity. No transpeptidase activity was apparent in a model transpeptidase reaction. Among a number of active site-directed agents, N-chlorosuccinimide, elastinal, iodoacetamide, iodoacetic acid, and phenylglyoxal gave substantial inhibition, and methyl boronic acid gave modest inhibition. The pH profile for activity against Ac2-l-Lys-D-Ala-d-Ala (kcat/Km) was bell-shaped, with pKa values at 6.9 and 10.1. Comparison of the enzymatic properties of NG PBP 4 with other DD-carboxypeptidases highlights both similarities and differences within these enzymes, and suggests the possibility of common mechanistic roles for the two highly conserved active site lysines in Class A and C low molecular mass PBPs.  相似文献   

19.
A steady state kinetic investigation of the P(i) activation of 5-phospho-d-ribosyl alpha-1-diphosphate synthase from Escherichia coli suggests that P(i) can bind randomly to the enzyme either before or after an ordered addition of free Mg(2+) and substrates. Unsaturation with ribose 5-phosphate increased the apparent cooperativity of P(i) activation. At unsaturating P(i) concentrations partial substrate inhibition by ribose 5-phosphate was observed. Together these results suggest that saturation of the enzyme with P(i) directs the subsequent ordered binding of Mg(2+) and substrates via a fast pathway, whereas saturation with ribose 5-phosphate leads to the binding of Mg(2+) and substrates via a slow pathway where P(i) binds to the enzyme last. The random mechanism for P(i) binding was further supported by studies with competitive inhibitors of Mg(2+), MgATP, and ribose 5-phosphate that all appeared noncompetitive when varying P(i) at either saturating or unsaturating ribose 5-phosphate concentrations. Furthermore, none of the inhibitors induced inhibition at increasing P(i) concentrations. Results from ADP inhibition of P(i) activation suggest that these effectors compete for binding to a common regulatory site.  相似文献   

20.
Inhibition of protein folding in the endoplasmic reticulum (ER) causes ER stress, which triggers the unfolded protein response (UPR). To decrease the biosynthetic burden on the ER, the UPR inhibits in its initial stages protein synthesis. At later stages it upregulates components of ER-associated degradation (ERAD) and of the ubiquitin/proteasome system, which targets ER as well as cytosolic proteins for disposal. Here we report that, at later stages, the UPR also activates an alternative nonproteasomal pathway of degradation, which is resistant to proteasome inhibitors and is specific for ER substrates (assessed with uncleaved precursor of asialoglycoprotein receptor H2a and unassembled CD3delta) and not for cytosolic ones (p53). To mimic the initial inhibition of translation during UPR, we incubated cells with cycloheximide. After this treatment, degradation of ERAD substrates was no longer effected by proteasomal inhibition, similarly to the observed outcome of UPR. The degradation also became insensitive to abrogation of ubiquitination in a cell line carrying a thermosensitive E1 ubiquitin activating enzyme mutant. Of all protease inhibitors tested, only the metal chelator o-phenanthroline could block this nonproteasomal degradation. Preincubation of o-phenanthroline with Mn2+ or Co2+, but not with other cations, reversed the inhibition. Our results suggest that, upon inhibition of translation, an alternative nonproteasomal pathway is activated for degradation of proteins from the ER. This involves a Mn2+/Co2+-dependent metalloprotease or other metalloprotein. The alternative pathway selectively targets ERAD substrates to reduce the ER burden, but does not affect p53, the levels of which remain dependent on proteasomal control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号