首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Treatment of 1,2:5,6-di-O-isopropylidene-α-d-ribo- and xylo-hexofuranos-3-uloses with (difluoromethylene)triphenylphosphorane and (chlorofluoromethylene)-triphenylphosphorane gave unsaturated, ramified halogeno sugars in good yield. Treatment of the chlorofluoromethylene derivatives with lithium aluminum hydride gave stereospecifically the corresponding fluoromethylene derivatives with inversion of configuration at the double bond. The configuration was determined by 1h- and 19F-n.m.r. spectrometry.  相似文献   

3.
We have recently described a cryptand structure, FCryp-1, with appropriate properties for an indicator of intracellular free Na+ concentration using the 19F-n.m.r. chemical shift of the incorporated 5FBAPTA [1,2-bis-(2-amino-5-fluorophenoxy)ethane-NNN'N'-tetra-acetic acid] reporter group to measure the free cytosolic Na+ concentration [( Na+]i) [Smith, Morris, Hesketh and Metcalfe (1986) Biochim. Biophys. Acta 889, 82-83]. FCryp-1 carries four carboxylate groups to confer aqueous solubility and the indicator is membrane-permeant when the carboxyls are esterified with acetoxymethyl ester groups. Here we describe the synthesis of FCryp-2 to provide a fluorescent indicator of [Na+]i. FCryp-2 retains the parent tribenzo (2:2:1) cryptand structure of FCryp-1, in which the benzenoid ring at C-21 in FCryp-1 is replaced by an indole derivative which acts as the fluorophor in FCryp-2. With excitation at 340 nm, FCryp-2 gives an emission maximum at 460 nm in the absence of Na+ which shifts to 395 nm when FCryp-2 is saturated with Na+, with an isosbestic point at 455 nm. The apparent dissociation constant of FCryp-2 in a buffer solution of 100 mM-KCl/20 mM-KH2PO4/K2HPO4, pH 7.0, at 37 degrees C is 6.0 mM and the free Na+ concentration can be measured either from the calibrated fluorescence intensity at 395 nm, which increases 25-fold when Na+ is bound to FCryp-2, or from the ratio of fluorescence intensities at 395 nm and 455 nm. The measurement of free [Na+] by either method is unaffected by K+, Ca2+ or Mg2+ in the normal intracellular concentration ranges. Free [Na+] measurements by the ratio method are unaffected by pH from 6.6 to 7.6.  相似文献   

4.
Seven arginylfluoroalkanes ('arginine fluoroalkyl ketones') were synthesized by using a modified Dakin-West procedure. The structure of benzoyl-Arg-CF2CF3 was analysed by 19F-n.m.r. spectroscopy and m.s. and the compound was shown to exist primarily as a hydrate or cyclic carbinolamine. Arginylfluoroalkanes are good inhibitors of blood-coagulation serine proteinases and were found to be slow-binding inhibitors for bovine trypsin with Ki values of 0.2-56 microM. Benzoyl-Arg-CF2CF3 was the best inhibitor for bovine thrombin and human Factor XIa, and inhibited thrombin and Factor XIa competitively with Ki values of 13 microM and 62 microM respectively. The best inhibitor for pig pancreatic kallikrein was p-toluoyl-Arg-CF3, with a Ki value of 35 microM. Benzoyl-Arg-CF3 and benzoyl-Arg-CF2CF3 inhibited human plasma kallikrein competitively, with Ki values of 50 microM. None of the seven arginylfluoroalkanes was a good inhibitor of human factor Xa or of Factor XIIa. The arginylfluoroalkanes were tested in the prothrombin time (PT) and activated partial thromboplastin time (APTT) coagulant assays. Two fluoroketones, benzoyl-Arg-CF2CF3 and 1-naphthoyl-Arg-CF3, had significant anticoagulant activity. Benzoyl-Arg-CF2CF3 was found to prolong the PT 1.8-fold at 120 microM and to prolong the APTT 2.4-fold at 90 microM, whereas 1-naphthoyl-Arg-CF3 only prolonged the APTT 1.7-fold at 100 microM.  相似文献   

5.
6.
19F-n.m.r. spectra were measured to investigate the effects of Ca2+ and Zn2+ on the interaction of trifluoperazine (TFP) with three S100 proteins. It was found that TFP binds to S100a and S100ao proteins irrespective of the presence of Ca2+ and Zn2+, while in the presence of Ca2+ the apparent affinity of TFP to the proteins was greater than that in its absence or in the presence of Zn2+. In contrast, the binding affinity of TRP to S100b protein in the presence and absence of metal ions was lower than to S100a and S100ao proteins. These results suggested that TFP binds to each S100 protein in two ways: one is Ca2(+)- or Zn2(+)-dependent specific manner and another is Ca2(+)- or Zn2(+)-independent non-specific manner.  相似文献   

7.
We have used two-dimensional (2D) NMR methods to examine complexes of Lactobacillus casei dihydrofolate reductase and methotrexate (MTX) analogues having structural modifications of the benzoyl ring [the 3',5'-difluoro and 3',5'-dichloro analogues (II and III)] and also the glutamic acid moiety [the alpha- and gamma-monoamides (IV and V)]. Assignments of the 1H signals in the spectra of the various complexes were made by comparison of their 2D spectra with those of complexes containing methotrexate where we have previously assigned resonances from 32 of the 162 amino acid residues. In the complexes formed with the dihalomethotrexate analogues, the glutamic acid and pteridine ring moieties were shown to bind to the enzyme in a manner similar to that found in the methotrexate-enzyme complex. Perturbations in 1H chemical shifts of protons in Phe-49, Leu-54, and Leu-27 and the methotrexate H7 and NMe protons were observed in the different complexes and were accounted for by changes in orientation of the benzoyl ring in the various complexes (15 degrees and 25 degrees in the difluoro- and dichloromethotrexate complexes, respectively). Binding of oxidized or reduced coenzyme (NADP+ or NADPH) to the binary complexes did not result in different shifts for Leu-27, Leu-54, or Leu-19 protons, and thus, the orientation of the benzoyl ring of the methotrexate analogues is not perturbed greatly by the presence of either oxidized or reduced coenzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
L Luo  K L Taylor  H Xiang  Y Wei  W Zhang  D Dunaway-Mariano 《Biochemistry》2001,40(51):15684-15692
4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA to 4-hydroxybenzoyl-CoA (4-HBA-CoA) via a multistep mechanism involving initial attack of Asp145 on C(4) of the substrate benzoyl ring to form a Meisenheimer intermediate (EMc), followed by expulsion of the chloride ion to form an arylated enzyme intermediate (EAr) and then ester hydrolysis in the EAr to form product. This study examines the role of binding interactions in dehalogenase catalysis. The enzyme and substrate groups positioned for favorable binding interaction were identified from the X-ray crystal structure of the enzyme-4-HBA-3'-dephospho-CoA complex. These groups were individually modified (via site-directed mutagenesis or chemical synthesis) for the purpose of disrupting the binding interaction. The changes in the Gibbs free energy of the enzyme-substrate complex (DeltaDeltaG(ES)) and enzyme-transition state complex (DeltaDeltaG) brought about by the modification were measured. Cases where DeltaDeltaG exceeds DeltaDeltaG(ES) are indicative of binding interactions used for catalysis. On the basis of this analysis, we show that the H-bond interactions between the Gly114 and Phe64 backbone amide NHs and the substrate benzoyl C=O group contribute an additional 3.1 kcal/mol of stabilization at the rate-limiting transition state. The binding interactions between the enzyme and the substrate CoA nucleotide moiety also intensify in the rate-limiting transition state, reducing the energy barrier to catalysis by an additional 3.3 kcal/mol. Together, these binding interactions contribute approximately 10(6) to the k(cat)/K(m).  相似文献   

9.
Ma H  Ratnam K  Penning TM 《Biochemistry》2000,39(1):102-109
Rat liver 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD), an aldo-keto reductase, binds NADP(+) in an extended anti-conformation across an (alpha/beta)(8)-barrel. The orientation of the nicotinamide ring, which permits stereospecific transfer of the 4-pro-R hydride from NAD(P)H to substrate, is achieved by hydrogen bonds formed between the C3-carboxamide of the nicotinamide ring and Ser 166, Asn 167, and Gln 190 and by pi-stacking between this ring and Tyr 216. These residues were mutated to yield S166A, N167A, Q190A, and Y216S. In these mutants, K(d)(NADP(H)) increased by 2-11-fold but without a significant change in K(d)(NAD(H)). Steady-state kinetic parameters showed that K(m)(NADP)()+ increased 13-151-fold, and this was accompanied by comparable decreases in k(cat)/K(m)(NADP)()+. By contrast, K(m)(NAD)()+ increased 4-8-fold, but changes in k(cat)/K(m)(NAD)()+ were more dramatic and ranged from 23- to 930-fold. Corresponding changes in binding energies indicated that each residue contributed equally to the binding of NADP(H) in the ground and transition states. However, the same residues stabilized the binding of NAD(H) only in the transition state. These observations suggest that different modes of binding exist for NADP(H) and NAD(H). Importantly, these modes were revealed by mutating residues in the nicotinamide pocket indicating that direct interactions with the 2'-phosphate in the adenine mononucleotide is not the sole determinant of cofactor preference. The single mutations were unable to invert or racemize the stereochemistry of hydride transfer even though the nicotinamide pocket can accommodate both anti- and syn-conformers once the necessary hydrogen bonds are eliminated. When 4-pro-R-[(3)H]NADH was used to monitor incorporation into [(14)C]-5alpha-dihydrotestosterone, a decrease in the (3)H:(14)C ratio was observed in the mutants relative to wild-type enzyme reflecting a pronounced primary kinetic isotope effect. This observation coupled with the change in the binding energy for NAD(P)(H) in the transition state suggests that these mutants have altered the reaction trajectory for hydride transfer.  相似文献   

10.
The 19F n.m.r. spectrum of 3-fluoro-3-deoxy-D-glucose (3FG) in a red-cell suspension was observed to contain separate resonances from the intra- and extra-cellular populations of both the alpha- and beta-anomers. This phenomenon was used with an n.m.r. spin-transfer procedure to measure the rate of exchange of the anomers across the human red-cell membrane under equilibrium-exchange conditions at 37 degrees C. The beta-anomer crossed the membrane significantly more quickly than the alpha-anomer. At a total 3FG concentration of 9.3 mM; the first-order rate constants for the efflux of the alpha- and beta-anomers were 0.41 +/- 0.15 and 0.88 +/- 0.20 s-1 respectively. The measurable 3FG exchange was inhibited by 75 and 100% respectively by the glucose-transport inhibitors cytochalasin B and phloretin. Glucose inhibited the exchange of 3FG, and the results were consistent with glucose and 3FG binding to the hexose-transport protein with similar affinity.  相似文献   

11.
The temperature dependences of fluorescence and phosphorescence spectra maxima of chromophor labels--endogenic (tryptophan) and exogenic (eosinisothiocyanate)--were measured for the preparations of photosynthetic membranes and reaction centers from Rhodospirillum rubrum. It was found that the dipole mobility of protein-lipid matrix in the vicinity of the chromophores intensified markedly with a temperature rise from 150 to 300K resulting in the corresponding relaxation time tau r decrease from 10(0) to 10(-8) s. The efficiency of direct transfer of the photomobilized electron in the system of quinone acceptors (A1- leads to A2) of reaction centers (characteristic half-times of the process being 10(-3) divided by 10(-4) s) was shown also to increase sharply at temperatures higher than 200K parallel to the enhancement of molecular motions with tau r approximately 10(-8) s. Meanwhile, changes observed in the rate of recombination of primary photoproducts, i.e. an oxidized bacteriochlorophyll dimer, P+ and a reduced acceptor, A1- (characteristic half-time of 10(-1) divided by 10(-2) s) and the activization of low-frequency motions with tau r approximately 10(-3) s in the external layers and tau r less than 1 s in the internal parts of the reaction centers protein develop over the same range of low temperatures (150-220 K). The nature of interactions which determine the dependence of the photosynthetic electron transport on the molecular mobility of the membrane proteins is discussed.  相似文献   

12.
The 13C-n.m.r. titration shifts of the alpha-methylene group of N-alkylated imidazoles are shown to be a sensitive probe of the ionization of the imidazolium ion. The 13C-n.m.r. titration shifts of both the intact and denatured/autolysed 2-13C- and 1-13C-enriched trypsin-7-amino-3-benzyloxycarbonylamino-1-chloroheptan-2-one (Z-Lys-CH2Cl) complexes are compared. The titration shift for the denatured/autolysed complex confirms that this ionization is due to deprotonation of the N-alkylated imidazolium ring of histidine-57. In the intact trypsin-inhibitor complex the titration shift due to the 1-13C-enriched carbon is anomalous. We conclude that this titration shift cannot arise solely from the ionization of the imidazolium ion of histidine-57 and that the pKa of the imidazolium ion of histidine-57 is raised in the trypsin-inhibitor complex. The relevance of these studies to the mechanism of action of the serine proteinases is discussed.  相似文献   

13.
2,3-Dihydroxybiphenyl 1,2-dioxygenase (EC ), the extradiol dioxygenase of the biphenyl biodegradation pathway, is subject to inactivation during the steady-state cleavage of catechols. Detailed analysis revealed that this inactivation was similar to the O(2)-dependent inactivation of the enzyme in the absence of catecholic substrate, resulting in oxidation of the active site Fe(II) to Fe(III). Interestingly, the catecholic substrate not only increased the reactivity of the enzyme with O(2) to promote ring cleavage but also increased the rate of O(2)-dependent inactivation. Thus, in air-saturated buffer, the apparent rate constant of inactivation of the free enzyme was (0.7 +/- 0.1) x 10(-3) s(-1) versus (3.7 +/- 0.4) x 10(-3) s(-1) for 2,3-dihydroxybiphenyl, the preferred catecholic substrate of the enzyme, and (501 +/- 19) x 10(-3) s(-1) for 3-chlorocatechol, a potent inactivator of 2,3-dihydroxybiphenyl 1,2-dioxygenase (partition coefficient = 8 +/- 2, K(m)(app) = 4.8 +/- 0.7 microm). The 2,3-dihydroxybiphenyl 1,2-dioxygenase-catalyzed cleavage of 3-chlorocatechol yielded predominantly 2-pyrone-6-carboxylic acid and 2-hydroxymuconic acid, consistent with the transient formation of an acyl chloride. However, the enzyme was not covalently modified by this acyl chloride in vitro or in vivo. The study suggests a general mechanism for the inactivation of extradiol dioxygenases during catalytic turnover involving the dissociation of superoxide from the enzyme-catecholic-dioxygen ternary complex and is consistent with the catalytic mechanism.  相似文献   

14.
3-Hydroxy steroid dehydrogenase activities of cortisone reductase   总被引:3,自引:3,他引:0  
The behaviour of various C(19) and C(18) steroids as substrates for crystalline preparations of cortisone reductase (EC 1.1.1.53) is described. 3alpha(Axial,3R)-, 3alpha(equatorial,3R)- and 3beta(axial,3S)-hydroxy steroid-NAD oxidoreductase activities are demonstrated. Four pairs of the substrates differed only in the shape of the a/b ring junction, three pairs differed only in substitution at C-10, and four pairs differed only in substitution in ring d. The shape of the substrate molecule and certain substituents (e.g. 10beta-methyl, 17beta-hydroxy, 16-oxo or 17-oxo) altered substrate behaviour, but steroids differing considerably in shape nevertheless acted as substrates, suggesting the possibility of a large or flexible binding site. K(m) values varied about 10-fold, many being approx. 140mum. V(max.) values covered a greater range (about 200-fold) and the good substrates had high V(max.) values rather than low K(m) values.  相似文献   

15.
Stereoselective reductive metabolism of various p-substituted acetophenone derivatives was studied using isolated rat liver 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD). Kinetic experiments were performed and analyzed by measuring the products by HPLC using a chiral column. The results demonstrated that the presence of an electron-withdrawing substituent on the benzene ring plays an important role in determining the reduction rate in the syntheses of various (S)-alcohols from their corresponding carbonyl compounds. A plot of log {(V(max)/K(m))X/(V(max)/K(m))H} versus the substituent parameter (pi, sigma(para), Es) shows an increasing rate mainly for electron-withdrawing substituents, with a correlation coefficient (r(2)) of 0.97 which was obtained for triplicate data that were significant at the p<0.0001 level. With this in mind, new drugs can be designed that exploit this reduction pathway by introducing an electron-withdrawing group adjacent to the reduction site when a reduction reaction is desired, or by adding an electron-donating group when minimization of the reduction pathway is desired.  相似文献   

16.
A library of 35 cis-1-benzoyl-2-methyl-4-(phenylamino)-1,2,3,4-tetrahydroquinolines was prepared. The compounds bore various substitutuents on the benzoyl ring, at the 4-position of the phenylamino ring and at the 6-position of the tetrahydroquinoline ring. The compounds were assayed for their ability to cause expression of a reporter gene downstream of an ecdysone response element in a mammalian cell line engineered to express the ecdysone receptor from Aedes aegypti. In general, compounds with small lipophilic substituents at the meta and para-positions of the benzoyl ring and hydrogen or fluorine at the 4-position of the phenylamino ring and the 6-position of the tetrahydroquinoline ring were the most potent.  相似文献   

17.
3-Fluoro- (4), 3-epi-3-fluoro- (3), and 3,3-difluoro-3-de(methoxy)sporaricin A (5) have been prepared by reaction of diethylaminosulfur trifluoride with the corresponding precursors: 1,2′,6′-tris(N-benzyloxycarbonyl)-4-N, 5-O-carbonyl-3-de(O-methyl)sporaricin B (6), its 3-epi-3-hydroxy isomer (10), and the 3-oxo derivative (9). The structures of 3,4, and 5 were determined by 1H-, 13C-, and 19F-n.m.r. spectroscopy.  相似文献   

18.
The discovery of the first class of potent glucose-6-phosphatase catalytic site inhibitors, substituted 4,5,6,7-tetrahydrothieno[3,2-c]- and -[2,3-c]pyridines, is described. Optimisation of this series involved solution phase combinatorial synthesis and very potent compounds were prepared with IC50 values down to 140 nM. The structure activity relationship (SAR) of these compounds indicates that: a tetrahydrothieno[3,2-c]pyridine core ring system and the isomeric [2,3-c] system are equipotent and much better than the corresponding benzo analogue, 1,2,3,4-tetrahydro-isoquinoline. The 4-substituent of the tetrahydrothieno[3,2-c]pyridine ring has to be a phenyl group, optionally substituted with a lipophilic 4-substituent, such as trifluoromethoxy or chloro. The 5-substituent of the tetrahydrothieno[3,2-c]pyridine ring has to be a substituted benzoyl; anisoyl and (E)-3-furan-3-ylacryloyl are the best of the investigated groups. Substitution in the benzoyl ortho position seems to be forbidden, whereas substitution in the meta position is tolerated only if a methoxy para substituent is present. These SAR findings were parallel to those obtained in the 4,5,6,7-tetrahydrothieno[2,3-c]pyridine system. Enantioselectivity in enzyme recognition was observed and the activity resided in all cases only in one of the enantiomers.  相似文献   

19.
D H Kim  G H Nam  D S Jang  G Choi  S Joo  J S Kim  B H Oh  K Y Choi 《Biochemistry》1999,38(42):13810-13819
The aromatic residues Phe-54, Phe-82, and Trp-116 in the hydrophobic substrate-binding pocket of Delta(5)-3-ketosteroid isomerase from Pseudomonas putida biotype B have been characterized in their roles in steroid binding and catalysis. Kinetic and equilibrium binding analyses were carried out for the mutant enzymes with the substitutions Phe-54 --> Ala or Leu, Phe-82 --> Ala or Leu, and Trp-116 --> Ala, Phe, or Tyr. The removal of their bulky, aromatic side chains at any of these three positions results in reduced k(cat), particularly when Phe-82 or Trp-116 is replaced by Ala. The results are consistent with the binding interactions of the aromatic residues with the bound steroid contributing to catalysis. All the mutations except the F82A mutation increase K(m); the F82A mutation decreases K(m) by ca. 3-fold, suggesting a possibility that the phenyl ring at position 82 might be unfavorable for substrate binding. The K(D) values for d-equilenin, an intermediate analogue, suggest that a space-filling hydrophobic side chain at position 54, a phenyl ring at position 82, and a nonpolar aromatic or small side chain at position 116 might be favorable for binding the reaction intermediate. In contrast to the increased K(D) for equilenin, the enzymes with any substitutions at positions 54 and 116 display a decreased K(D) for 19-nortestosterone, a product analogue, indicating that Phe-54 and Trp-116 might be unfavorable for product binding. The crystal structure of F82A determined to 2.1-A resolution reveals that Phe-82 is important for maintaining the active site geometry. Taken together, our results demonstrate that Phe-54, Phe-82, and Trp-116 contribute differentially to the stabilization of steroid species including substrate, intermediate, and product.  相似文献   

20.
The amino acid sequence G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-K(8)-P(9) occurs twice in the proline-rich glycoprotein (PRG) found in human parotid saliva. As part of our efforts to elucidate the structure-function relationships of PRG, this nonapeptide sequence (PRG9) was synthesized for the purpose of conformational analyses by high-resolution proton n.m.r. spectroscopy and computer-modeling. The empirical n.m.r. spectrum differed from the simulated spectrum in that the overall chemical shift locations were displaced from their random coil positions and the five proline residues had non-degenerate C alpha H alpha protons. Other n.m.r. data indicated that no intramolecular hydrogen-bonding was present in the PRG. In conjunction with X-ray crystallographic data on a triproline-containing model compound (Kartha, g., Ashida, T. & Kakudo, M. (1974) Acta Cryst. B30, 1861-1866), four energy-minimized PRG9 structures were obtained. Two of the structures were energetically unfavorable, while the other two conformations were reasonable. The two most likely structures gave all prolines an S-type ring pucker, the P(2)-P(3)-P(4) sequence as a poly-L-proline II helix, the H(5) phi = -90.3 degrees, P(6) and P(9) with trans peptide bond orientation, G(7) in an extended state, and the K(8) phi = -93.2 degrees or -146.8 degrees for structures #1 and #2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号