首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid-stimulating hormone (TSH) action in adipose tissue remains largely unknown. Our previous work indicates that human preadipocytes express functional TSH receptor (TSHR) protein, demonstrated by TSH activation of p70 S6 kinase (p70 S6K). We have now studied murine 3T3-L1 preadipocytes to further characterize TSH signaling and cellular action. Western blot analysis of 3T3-L1 preadipocyte lysate revealed the 100-kDa mature processed form of TSHR. TSH activated p70 S6K and protein kinase B (PKB/Akt), as measured by immunoblot analysis. Preincubation with wortmannin or LY-294002 completely blocked TSH activation of p70 S6K and PKB/Akt, implicating phosphoinositide 3-kinase (PI3K) in their regulation. TSH increased phosphotyrosine protein(s) in the 125-kDa region and augmented the associated PI3K activity fourfold. TSH had no effect on cAMP levels in 3T3-L1 preadipocytes, suggesting that adenylyl cyclase is not involved in TSH activation of the PI3K-PKB/Akt-p70 S6K pathway. 3T3-L1 preadipocyte cell death was reduced by 29-76% in serum-deprived (6 h) preadipocytes treated with 1-20 microM TSH. In the presence of 20 microM TSH, an 88% reduction in terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL)-positive cells was observed in serum-starved (3 h) 3T3-L1 preadipocytes as well as a 93% reduction in the level of cleaved activated caspase 3. In summary, TSH acts as a survival factor in 3T3-L1 preadipocytes. TSH does not stimulate cAMP accumulation in these cells but instead activates a PI3K-PKB/Akt-p70 S6K pathway.  相似文献   

2.
Although there have been reports supporting the presence of the TSH receptor (TSHR) in human adipose tissue, these findings are still not universally accepted. Contributing to the controversy is a paucity of data about the physiological role the TSH receptor might play in adipose cells. In addition to mature lipid-filled adipocytes, adipose tissue also harbors a pool of specialized, fibroblast-like preadipocytes within the stromal-vascular compartment. Upon appropriate induction, preadipocytes can either differentiate into adipocytes or undergo apoptosis. Since TSHR has been detected in preadipocytes and adipocytes, its potential impact on adipose tissue function may relate to differentiation stage-specific cellular properties.  相似文献   

3.
Thyroid-stimulating hormone (TSH) regulates the growth and differentiation of thyrocytes by activating the TSH receptor (TSHR). This study investigated the roles of the phosphatidylinositol 3-kinase (PI3K), PDK1, FRAP/mammalian target of rapamycin, and ribosomal S6 kinase 1 (S6K1) signaling mechanism by which TSH and the stimulating type TSHR antibodies regulate thyrocyte proliferation and the follicle activities in vitro and in vivo. The TSHR immunoprecipitates exhibited PI3K activity, which was higher in the cells treated with either TSH or 8-bromo-cAMP. TSH and cAMP increased the tyrosine phosphorylation of TSHR and the association between TSHR and the p85alpha regulatory subunit of PI3K. TSH induced a redistribution of PDK1 from the cytoplasm to the plasma membrane in the cells in a PI3K- and protein kinase A-dependent manner. TSH induced the PDK1-dependent phosphorylation of S6K1 but did not induce Akt/protein kinase B phosphorylation. The TSH-induced S6K1 phosphorylation was inhibited by a dominant negative p85alpha regulatory subunit or by the PI3K inhibitors wortmannin and LY294002. Rapamycin inhibited the phosphorylation of S6K1 in the cells treated with either TSH or 8-bromo-cAMP. The stimulating type TSHR antibodies from patients with Graves disease also induced S6K1 activation, whereas the blocking type TSHR antibodies from patients with primary myxedema inhibited TSH- but not the insulin-induced phosphorylation of S6K1. In addition, rapamycin treatment in vivo inhibited the TSH-stimulated thyroid follicle hyperplasia and follicle activity. These findings suggest an interaction between TSHR and PI3K, which is stimulated by TSH and cAMP and might involve the downstream S6K1 but not Akt/protein kinase B. This pathway may play a role in the TSH/stimulating type TSH receptor antibody-mediated thyrocyte proliferation in vitro and in the response to TSH in vivo.  相似文献   

4.
Thyroid-stimulating hormone (TSH) has been shown to play an important role in the regulation of triglyceride (TG) metabolism in adipose tissue. Adipose triglyceride lipase (ATGL) is a rate-limiting enzyme controlling the hydrolysis of TG. Thus far, it is unclear whether TSH has a direct effect on the expression of ATGL. Because TSH function is mediated through the TSH receptor (TSHR), TSHR knockout mice (Tshr-/- mice) (supplemented with thyroxine) were used in this study to determine the effects of TSHR deletion on ATGL expression. These effects were verified in 3T3-L1 adipocytes and potential underlying mechanisms were explored. In the Tshr-/- mice, ATGL expression in epididymal adipose tissue was significantly increased compared with that in Tshr+/+ mice. ATGL expression was observed to increase with the differentiation process of 3T3-L1 preadipocytes. In mature 3T3-L1 adipocytes, TSH significantly suppressed ATGL expression at both the protein and mRNA levels in a dose-dependent manner. Forskolin, which is an activator of adenylate cyclase, suppressed the expression of ATGL in 3T3-L1 adipocytes. The inhibitory effects of TSH on ATGL expression were abolished by H89, which is a protein kinase A (PKA) inhibitor. These results indicate that TSH has an inhibitory effect on ATGL expression in mature adipocytes. The associated mechanism is related to PKA activation.  相似文献   

5.
6.
Adipose cells are extrathyroidal targets of thyroid-stimulating hormone (TSH). TSH stimulates interleukin-6 (IL-6) release from adipocytes. We examined TSH responsiveness as a function of stage of differentiation or adipose tissue depot in cultured adipose cells and determined the effect of TSH on extrathyroidal IL-6 production in vivo. Stromal preadipocytes, isolated from human abdominal subcutaneous or omental adipose tissue, and their differentiated counterparts were studied. IL-6 protein concentration in the medium was measured after TSH stimulation. Basal IL-6 release was greater for preadipocytes than differentiated adipocytes, whether derived from subcutaneous or omental fat depots. A depot-dependent effect (omental > subcutaneous) on basal IL-6 release was observed for preadipocytes (1.6-fold, P < 0.05); a similar trend for differentiated adipocytes was not significant (6.2-fold, P > 0.05). IL-6 responsiveness to TSH was observed upon differentiation, but only for subcutaneous adipocytes (1.9-fold over basal, P < 0.001). To determine if TSH could stimulate IL-6 release from extrathyroidal tissues in vivo, we measured serum IL-6 levels from five thyroidectomized patients who received recombinant human (rh) TSH and found that levels increased by threefold on days 3 and 4 (P < 0.05) after its administration. Our data demonstrate that stage of differentiation and fat depot origin affect basal and TSH-stimulated IL-6 release from adipose cells in culture. Furthermore, rhTSH elevates serum IL-6 response in thyroidectomized patients, indicating an extrathyroidal site of TSH action.  相似文献   

7.
8.
C.RF- Tshr(hyt/hyt) mice have a mutated thyroid-stimulating hormone receptor (TSHR), and, without thyroid hormone supplementation, these mice develop severe hypothyroidism. When hypothyroid Tshr(hyt/hyt) mice were exposed to cold (4 degrees C), rectal temperature rapidly dropped to 23.9 +/- 0.40 degrees C at 90 min, whereas the wild-type mice temperatures were 37.0 +/- 0.15 degrees C. When we carried out functional rat TSHR gene transfer in the brown adipose tissues by plasmid injection combined with electroporation, there was no effect on the serum levels of thyroxine, although rectal temperature of the mice transfected with pcDNA3.1/Zeo-rat TSHR 90 min after cold exposure remained at 34.6 +/- 0.34 degrees C, which was significantly higher than that of Tshr(hyt/hyt) mice. Transfection of TSHR cDNA increased mRNA and protein levels of uncoupling protein-1 (UCP-1) in brown adipose tissues, and the weight ratio of brown adipose tissue to overall body weight also increased. Exogenous thyroid hormone supplementation to Tshr(hyt/hyt) mice restored rectal temperature 90 min after exposure to cold (36.8 +/- 0.10 degrees C). These results indicate that not only thyroid hormone but also thyroid-stimulating hormone (TSH)/TSHR are involved in the expression mechanism of UCP-1 in mouse brown adipose tissue. TSH stimulates thermogenesis and functions to protect a further decrease in body temperature in the hypothyroid state.  相似文献   

9.
Thyroid cell proliferation is regulated by the concerted action of TSH/cAMP and serum growth factors. The specific contributions of cAMP-dependent vs. -independent signals to cell cycle progression are not well understood. We examined the molecular basis for the synergistic effects of TSH and serum on G1/S phase cell cycle progression in rat thyroid cells. Although strictly required for thyroid cell proliferation, TSH failed to stimulate G1 phase cell cycle progression. Together with serum, TSH increased the number of cycling cells. TSH enhanced the effects of serum on retinoblastoma protein hyperphosphorylation, cyclin-dependent kinase 2 activity, and cyclin A expression. Most notably, TSH and serum elicited strikingly different effects on p27 localization. TSH stimulated the nuclear accumulation of p27, whereas serum induced its nuclear export. Unexpectedly, TSH enhanced the depletion of nuclear p27 in serum-treated cells. Furthermore, only combined treatment with TSH and serum led to rapamycin-sensitive p27 turnover. Together, TSH and serum stimulated p70S6K activity that remained high through S phase. These data suggest that TSH regulates cell cycle progression, in part, by increasing the number of cycling cells through p70S6K-mediated effects on the localization of p27.  相似文献   

10.
Thyroid-stimulating hormone receptor (TSHR) plays a central role in regulating thyroid function and is targeted by IgGs in Graves' disease (GD-IgG). Whether TSHR is involved in the pathogenesis of thyroid-associated ophthalmopathy (TAO), the orbital manifestation of GD, remains uncertain. TSHR signaling overlaps with that of insulin-like grow factor 1 receptor (IGF-1R). GD-IgG can activate fibroblasts derived from donors with GD to synthesize T cell chemoattractants and hyaluronan, actions mediated through IGF-1R. In this study, we compare levels of IGF-1R and TSHR on the surfaces of TAO and control orbital fibroblasts and thyrocytes and explore the physical and functional relationship between the two receptors. TSHR levels are 11-fold higher on thyrocytes than on TAO or control fibroblasts. In contrast, IGF-1R levels are 3-fold higher on TAO vs control fibroblasts. In pull-down studies using fibroblasts, thyrocytes, and thyroid tissue, Abs directed specifically against either IGF-1Rbeta or TSHR bring both proteins out of solution. Moreover, IGF-1Rbeta and TSHR colocalize to the perinuclear and cytoplasmic compartments in fibroblasts and thyrocytes by confocal microscopy. Examination of orbital tissue from patients with TAO reveals similar colocalization to cell membranes. Treatment of primary thyrocytes with recombinant human TSH results in rapid ERK phosphorylation which can be blocked by an IGF-1R-blocking mAb. Our findings suggest that IGF-1R might mediate some TSH-provoked signaling. Furthermore, they indicate that TSHR levels on orbital fibroblasts are considerably lower than those on thyrocytes and that this receptor associates with IGF-1R in situ and together may comprise a functional complex in thyroid and orbital tissue.  相似文献   

11.
12.
To determine the relative importance of TSH in white adipose tissue, we compared the adipose phenotypes of two distinct mouse models of hypothyroidism. These models differed in that the normal reciprocal relationship between thyroid hormone and TSH was intact in one and disrupted in the other. One model, thyroidectomized (THYx) mice, had a 100-fold increase in TSH and a normal TSH receptor (TSHR); in contrast, the other model, hyt/hyt mice, had a 120-fold elevation of TSH but a nonfunctional TSHR. Although both THYx and hyt/hyt mice were in a severe hypothyroid state, the epididymal fat (mg)/body wt (g) (F/B) ratio of THYx mice was much smaller than that of hyt/hyt mice (8.2 ± 0.43 vs. 14.4 ± 0.40, respectively, P < 0.001). The fat cell diameter in THYx mice was also smaller than that in hyt/hyt mice (79 ± 2.8 vs. 105 ± 2.2 μm, respectively, P < 0.001), suggesting that TSH induced lipolysis in adipose tissues. When we transferred a functional mouse TSHR gene and a control plasmid into opposite sides of epididymal fat of hyt/hyt mice by plasmid injection combined with electroporation, fat weight of the TSHR side was decreased to 60% of that of the control side. Messenger RNA levels of hormone-sensitive lipase in epididymal fat containing the transferred TSHR gene were twofold higher than those in tissue from the control side. These results indicated that TSH worked as a lipolytic factor in white adipose tissues, especially in mice in a hypothyroid state.  相似文献   

13.
14.
The thyrotropin receptor (TSHR), the major autoantigen in Graves' disease, is posttranslationally modified by intramolecular cleavage to form disulfide-linked A- and B-subunits. Because Graves' hyperthyroidism is preferentially induced in BALB/c mice using adenovirus encoding the free A-subunit rather than full-length human TSHR, the shed A-subunit appears to drive the disease-associated autoimmune response. To further investigate this phenomenon, we generated transgenic mice with the human A-subunit targeted to the thyroid. Founder transgenic mice had normal thyroid function and were backcrossed to BALB/c. The A-subunit mRNA expression was confirmed in thyroid tissue. Unlike wild-type littermates, transgenic mice immunized with low-dose A-subunit adenovirus failed to develop TSHR Abs, hyperthyroidism, or splenocyte responses to TSHR Ag. Conventional immunization with A-subunit protein and adjuvants induced TSHR Abs lacking the characteristics of human autoantibodies. Unresponsiveness was partially overcome using high-dose, full-length human TSHR adenovirus. Although of low titer, these induced Abs recognized the N terminus of the A-subunit, and splenocytes responded to A-subunit peptides. Therefore, "non-self" regions in the B-subunit did not contribute to inducing responses. Indeed, transgenic mice immunized with high-dose A-subunit adenovirus developed TSHR Abs with thyrotropin-binding inhibitory activity, although at lower titers than wild-type littermates, suggesting down-regulation in the transgenic mice. In conclusion, in mice expressing a human A-subunit transgene in the thyroid, non-self human B-subunit epitopes are not necessary to induce responses to the A-subunit. Our findings raise the possibility that autoimmunity to the TSHR in humans may not involve epitopes on a cross-reacting protein, but rather, strong adjuvant signals provided in bystander immune responses.  相似文献   

15.
16.
17.
Identification of the protein factors that regulate the adipogenesis and lipid metabolism of adipose tissue is critical for the understanding of the physiology and pathology of obesity and energy homeostasis. In this study, we found that G protein coupled receptor (GPCR) kinase 5 (GRK5) was expressed at a relatively high level in the white adipose tissue. When fed on a high-fat diet, GRK5(-/-) mice gained significantly less weight and had decreased WAT mass than their wild type littermates, which could not be attributed to alterations in food consumption or energy expenditure. However, GRK5(-/-) mice showed a 30-70% decreased expression of lipid metabolism and adipogenic genes in WAT. Moreover, GRK5(-/-) embryonic fibroblasts and preadipocytes exhibited 40-70% decreased expression of adipogenic genes and impaired adipocyte differentiation when induced in vitro. Taken together, these results suggest that GRK5 is an important regulator of adipogenesis and is crucial for the development of diet-induced obesity.  相似文献   

18.
19.
Development of an animal model of autoimmune thyroid eye disease   总被引:12,自引:0,他引:12  
In previous studies we have transferred thyroiditis to naive BALB/c and NOD mice with human thyrotropin (TSH) receptor (TSHR)-primed splenocytes. Because the TSHR has been implicated in the pathogenesis of thyroid eye disease (TED) we have examined the orbits of recipients of TSHR-primed T cells, generated using a TSHR fusion protein or by genetic immunization. In the NOD mice, 25 of 26 animals treated with TSHR-primed T cells developed thyroiditis with considerable follicular destruction, numerous activated and CD8+ T cells, and immunoreactivity for IFN-gamma. Thyroxine levels were reduced. Thyroiditis was not induced in controls. None of the NOD animals developed any orbital pathology. Thirty-five BALB/c mice received TSHR-primed spleen cells. Thyroiditis was induced in 60-100% and comprised activated T cells, B cells, and immunoreactivity for IL-4 and IL-10. Autoantibodies to the receptor were induced, including TSH binding inhibiting Igs. A total of 17 of 25 BALB/c orbits displayed changes consisting of accumulation of adipose tissue, edema caused by periodic acid Schiff-positive material, dissociation of the muscle fibers, the presence of TSHR immunoreactivity, and infiltration by lymphocytes and mast cells. No orbital changes or thyroiditis were observed in control BALB/c mice. We have induced orbital pathology having many parallels with human TED, only in BALB/c mice, suggesting that a Th2 autoimmune response to the TSHR may be a prerequisite for the development of TED.  相似文献   

20.
The growth-retarded (grt) mouse has an autosomal recessive, fetal-onset, severe thyroid hypoplasia related to TSH hyporesponsiveness. Through genetic mapping and complementation experiments, we show that grt is a missense mutation of a highly conserved region of the tyrosylprotein sulfotransferase 2 (Tpst2) gene, encoding one of the two Tpst genes implicated in posttranslational tyrosine O-sulfation. We present evidence that the grt mutation leads to a loss of TPST2 activity, and TPST2 isoform has a high degree of substrate preference for TSH receptor (TSHR). The expression of TPST2 can restore TSH-TSHR-mediated cAMP production in fibroblasts derived from grt mice. Therefore, we propose that the tyrosine sulfation of TSHR by TPST2 is crucial for TSH signaling and resultant thyroid gland function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号