首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
Walker JJ  Lee KK  Desai RN  Erickson JW 《Genetics》2000,155(1):191-202
During sex determination, the sisterlessA (sisA) gene functions as one of four X:A numerator elements that set the alternative male or female regulatory states of the switch gene Sex-lethal. In somatic cells, sisA functions specifically in sex determination, but its expression pattern also hints at a role in the yolk cell, a syncytial structure believed to provide energy and nutrients to the developing embryo. Previous studies of sisA have been limited by the lack of a null allele, leaving open the possibility that sisA has additional functions. Here we report the isolation and molecular characterization of four new sisA alleles including two null mutations. Our findings highlight key aspects of sisA structure-function and reveal important qualitative differences between the effects of sisA and the other strong X:A numerator element, sisterlessB, on Sex-lethal expression. We use genetic, expression, clonal, and phenotypic analyses to demonstrate that sisA has an essential function in the yolk nuclei of both sexes. In the absence of sisA, endoderm migration and midgut formation are blocked, suggesting that the yolk cell may have a direct role in larval gut development. To our knowledge, this is the first report of a requirement for the yolk nuclei in Drosophila development.  相似文献   

3.
4.
The genetic, molecular and neuronal mechanism underlying circadian activity rhythms is well characterized in the brain of Drosophila. The small ventrolateral neurons (s-LNVs) and pigment dispersing factor (PDF) expressed by them are especially important for regulating circadian locomotion. Here we describe a novel gene, Dstac, which is similar to the stac genes found in vertebrates that encode adaptor proteins, which bind and regulate L-type voltage-gated Ca2+ channels (CaChs). We show that Dstac is coexpressed with PDF by the s-LNVs and regulates circadian activity. Furthermore, the L-type CaCh, Dmca1D, appears to be expressed by the s-LNVs. Since vertebrate Stac3 regulates an L-type CaCh we hypothesize that Dstac regulates Dmca1D in s-LNVs and circadian activity.  相似文献   

5.
6.
Drosophila Myc is required for normal DREF gene expression   总被引:1,自引:0,他引:1  
  相似文献   

7.
A G Fraser  N J McCarthy    G I Evan 《The EMBO journal》1997,16(20):6192-6199
Caspases are involved in the execution of cell death in all multicellular organisms so far studied, including the nematode worm, fruit fly and vertebrates. While Caenorhabditis elegans has only a single identified caspase, CED-3, whose activity is absolutely required for all developmental programmed cell deaths, most mammalian cell types express multiple caspases with varying specificities. The fruit fly Drosophila melanogaster is genetically tractable, less complex than vertebrates and possesses two known caspases, DCP-1 and drICE. The fly may therefore provide a good model system for examining the hierarchy and relative roles of individual caspases in the execution of apoptosis. We have examined the role of drICE in in vitro apoptosis of the D.melanogaster cell line S2. We show that cytoplasmic lysates made from S2 cells undergoing apoptosis induced by either reaper (rpr) expression or cycloheximide treatment contain a caspase activity with DEVD specificity which can cleave p35, lamin DmO, drICE and DCP-1 in vitro, and which can trigger chromatin condensation in isolated nuclei. Using antibodies specific to drICE, we show that immunodepletion of drICE from these lysates is sufficient to remove most measurable in vitro apoptotic activity, and that re-addition of exogenous drICE to such immunodepleted lysates restores apoptotic activity. We conclude that, at least in S2 cells, drICE can be the sole caspase effector of apoptosis.  相似文献   

8.
Suh J  Jackson FR 《Neuron》2007,55(3):435-447
Previous studies suggest that glia may be required for normal circadian behavior, but glial factors required for rhythmicity have not been identified in any system. We show here that a circadian rhythm in Drosophila Ebony (N-beta-alanyl-biogenic amine synthetase) abundance can be visualized in adult glia and that glial expression of Ebony rescues the altered circadian behavior of ebony mutants. We demonstrate that molecular oscillator function and clock neuron output are normal in ebony mutants, verifying a role for Ebony downstream of the clock. Surprisingly, the ebony oscillation persists in flies lacking PDF neuropeptide, indicating it is regulated by an autonomous glial oscillator or another neuronal factor. The proximity of Ebony-containing glia to aminergic neurons and genetic interaction results suggest a function in dopaminergic signaling. We thus suggest a model for ebony function wherein Ebony glia participate in the clock control of dopaminergic function and the orchestration of circadian activity rhythms.  相似文献   

9.
 We have studied the role of the wingless gene in embryonic brain development of Drosophila. wingless is expressed in a large domain in the anlage of the protocerebrum and also transiently in smaller domains in the anlagen of the deutocerebrum and tritocerebrum. Elimination of the wingless gene in null mutants has dramatic effects on the developing protocerebrum; although initially generated, approximately one half of the protocerebrum is deleted in wingless null mutants by apoptotic cell death at late embryonic stages. Using temperature sensitive mutants, a rescue of the mutant phenotype can be achieved by stage-specific expression of functional wingless protein during embryonic stages 9–10. This time period correlates with that of neuroblast specification but preceeds the generation and subsequent loss of protocerebral neurons. Ectopic wingless over-expression in gain-of-function mutants results in dramatically oversized CNS. We conclude that wingless is required for the development of the anterior protocerebral brain region in Drosophila. We propose that an important role of wingless in this part of the developing brain is the determination of neural cell fate. Received: 7 October 1997 / Accepted: 30 December 1997  相似文献   

10.
Sex determination in Drosophila melanogaster   总被引:7,自引:0,他引:7  
  相似文献   

11.
Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons   总被引:8,自引:0,他引:8  
Xu P  Atkinson R  Jones DN  Smith DP 《Neuron》2005,45(2):193-200
Odorant binding proteins (OBPs) are extracellular proteins localized to the chemosensory systems of most terrestrial species. OBPs are expressed by nonneuronal cells and secreted into the fluid bathing olfactory neuron dendrites. Several members have been shown to interact directly with odorants, but the significance of this is not clear. We show that the Drosophila OBP lush is completely devoid of evoked activity to the pheromone 11-cis vaccenyl acetate (VA), revealing that this binding protein is absolutely required for activation of pheromone-sensitive chemosensory neurons. lush mutants are also defective for pheromone-evoked behavior. Importantly, we identify a genetic interaction between lush and spontaneous activity in VA-sensitive neurons in the absence of pheromone. The defects in spontaneous activity and VA sensitivity are reversed by germline transformation with a lush transgene or by introducing recombinant LUSH protein into mutant sensilla. These studies directly link pheromone-induced behavior with OBP-dependent activation of a subset of olfactory neurons.  相似文献   

12.
The fat facets gene is required for Drosophila eye and embryo development.   总被引:8,自引:0,他引:8  
In a screen for mutations affecting Drosophila eye development, we have identified a gene called fat facets (faf) which is required for cell interactions that prevent particular cells in the developing eye from becoming photoreceptors. Analysis of eyes mosaic for faf+ and faf- cells shows that faf is required in cells near to, but outside, normal developing photoreceptors and also outside of the ectopic photoreceptors in mutant facets. faf is also essential during oogenesis, and we show that a faf-lacZ hybrid protein is localized via the first 392 amino acids of faf to the posterior pole of oocytes. Posterior localization of faf-lacZ depends on oskar. oskar encodes a key organizer of the pole plasm, a specialized cytoplasm at the posterior pole of embryos. The pole plasm is required for germ cell formation and contains the determinant of posterior polarity, encoded by nanos. Although other pole plasm components are required for localization of nanos RNA or for nanos protein function, faf is not. We have cloned the faf gene, and have shown that it encodes two similar large (approximately 300 x 10(3) M(r)) proteins that are unique with respect to other known proteins.  相似文献   

13.
BACKGROUND: The Drosophila eye is composed of about 800 ommatidia, each of which becomes dorsoventrally polarised in a process requiring signalling through the Notch, JAK/STAT and Wingless pathways. These three pathways are thought to act by setting up a gradient of a signalling molecule (or molecules) often referred to as the 'second signal'. Thus far, no candidate for a second signal has been identified. RESULTS: The four-jointed locus encodes a type II transmembrane protein that is expressed in a dorsoventral gradient in the developing eye disc. We have analysed the function and regulation of four-jointed during eye patterning. Loss-of-function clones or ectopic expression of four-jointed resulted in strong non-autonomous defects in ommatidial polarity on the dorsoventral axis. Ectopic expression experiments indicated that localised four-jointed expression was required at the time during development when ommatidial polarity was being determined. In contrast, complete removal of four-jointed function resulted in only a mild ommatidial polarity defect. Finally, we found that four-jointed expression was regulated by the Notch, JAK/STAT and Wingless pathways, consistent with it mediating their effects on ommatidial polarity. CONCLUSIONS: The clonal phenotypes, time of requirement and regulation of four-jointed are consistent with it acting in ommatidial polarity determination as a second signal downstream of Notch, JAK/STAT and Wingless. Interestingly, it appears to act redundantly with unknown factors in this process, providing an explanation for the previous failure to identify a second signal.  相似文献   

14.
Heat shock proteins are induced under stress conditions and they act as molecular chaperones to refold denatured polypeptides. Stress resistances including thermotolerance generally are correlated with levels of the heat shock proteins. We investigated a fruit fly gene encoding a small heat shock protein, Hsp27, to determine if it functions in stress response of Drosophila melanogaster. A knockout Hsp27 allele was generated. Flies homozygous for this allele were viable, without obvious defects, and fertile, indicating Hsp27 is not essential for development. In stress-response tests, loss of the Hsp27 gene caused no defects in resistance to heat shock or oxidative treatments. However, a significant reduction in starvation resistance was associated with the genotype without a functional Hsp27 gene. The data suggest that the Drosophila HSP27 protein acts as a chaperone to provide cellular stress resistance, although its function may be limited to a subset of the stress response such as the starvation resistance.  相似文献   

15.
J Sheen 《The EMBO journal》1993,12(9):3497-3505
Chlorophyll accumulation and photosynthetic gene activation are two hallmarks of greening process in etiolated maize leaves in response to light signals. However, very little is known about the relevant signal transduction pathways mediating these essential processes that lead to photosynthetic competence. It is shown here that a potent and specific protein phosphatase 1 (PP1) and PP2A inhibitor, okadaic acid, efficiently blocks chlorophyll accumulation induced by light in etiolated maize leaves. In addition, the light-inducible expression of two photosynthetic fusion genes can be specifically suppressed by the structurally unrelated PP1 and PP2A inhibitors, okadaic acid and calyculin A, using a sensitive and physiological maize protoplast transient assay. The specificity and effective concentration of the inhibitors in vivo and in vitro strongly suggest that PP1 is required for transmitting light signals. Intriguingly, several partial cDNAs encoding novel as well as conserved PP1 can be identified in maize leaves using the polymerase chain reaction. Studies of chimeric promoters indicate that PP1 activity is essential for the interaction of multiple regulatory elements. Although PP1 and PP2A have been implicated in the suppression of gene activity in yeast and animals, the present data indicate that PP1 appears to be essential for light-dependent gene activation in plants.  相似文献   

16.
The correct targeting of photoreceptor neurons (R-cells) in the developing Drosophila visual system requires multiple guidance systems in the eye-brain complex as well as the precise organization of the target area. Here, we report that the egghead (egh) gene, encoding a glycosyltransferase, is required for a compartment boundary between lamina glia and lobula cortex, which is necessary for appropriate R1-R6 innervation of the lamina. In the absence of egh, R1-R6 axons form a disorganized lamina plexus and some R1-R6 axons project abnormally to the medulla instead of the lamina. Mosaic analysis demonstrates that this is not due to a loss of egh function in the eye or in the neurons and glia of the lamina. Rather, as indicated by clonal analysis and cell-specific genetic rescue experiments, egh is required in cells of the lobula complex primordium which transiently abuts the lamina and medulla in the developing larval brain. In the absence of egh, perturbation of sheath-like glial processes occurs at the boundary region delimiting lamina glia and lobula cortex, and inappropriate invasion of lobula cortex cells across this boundary region disrupts the pattern of lamina glia resulting in inappropriate R1-R6 innervation. This finding underscores the importance of the lamina/lobula compartment boundary in R1-R6 axon targeting.  相似文献   

17.
18.
19.
20.
In Drosophila, the sex of germ cells is determined by autonomous and inductive signals. Somatic inductive signals can drive XX germ cells into oogenesis or into spermatogenesis. An autonomous signal makes XY germ cells male and unresponsive to sex determination by induction. The elements forming the X:A ratio in the soma and the genes tra, tra2, dsx, and ix that determine the sex of somatic cells have no similar role in the germline. The gene Sxl, however, is required for female differentiation of somatic and germ cells. Inductive signals that are dependent on somatic tra and dsx expression already affect the sex-specific development of germ cells of first instar larvae. At this early stage, however, germline expression of Sxl does not appear to affect the sexual characteristics of germ cells. Since inductive signals dependent on tra and dsx nevertheless influence the choice of sex-specific splicing of Sxl, it can be concluded that Sxl is a target of the inductive signal, but that its product is required late for oogenesis. Other genes must therefore control the early sexual dimorphism of larval germ cells. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号