首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanistic details of the interaction of 1,10-phenanthroline and its copper complex with Ehrlich ascites tumor cells were examined, using inhibition of cell proliferation, DNA breakage, and increased membrane permeability as indices of cellular damage. The metal chelating agent, 1,10-phenanthroline (OP), the 1:0.5 complex of 1,10-phenanthroline and CuCl2 [(OP)2Cu], and CuCl2 inhibited growth of Ehrlich ascites tumor cell monolayers during 48-h treatments by 50% at about 3.5, 2, and 70 nmol/10(5) cells/mL, respectively. (OP)2Cu at 10 nmol/10(5) cells also enhanced uptake of trypan blue dye during 6 h of treatment, while dye uptake in OP- and CuCl2-treated cells remained similar to controls. DNA breakage, measured by DNA alkaline elution, was produced during 1-h treatments with (OP)2Cu at drug/cell ratios similar to those producing growth inhibition. Copper uptake was similar for both (OP)2Cu and CuCl2. Electron spin resonance (ESR) spectroscopy suggested that cellular ligands bind copper added as (OP)2Cu or CuCl2 and then undergo time-dependent reductions of Cu(II) to Cu(I) for both forms. Inhibition of (OP)2Cu-induced single-strand scission and trypan blue uptake by scavengers of activated oxygen is consistent with participation of superoxide and H2O2 in both processes. In contrast, superoxide dismutase (SOD) did not reduce the magnitude of the fraction of cellular DNA appearing in lysis fractions prior to alkaline elution of (OP)2Cu-treated cells. Dimethyl sulfoxide (DMSO) inhibited uptake of trypan blue dye but did not inhibit DNA strand scission produced by (OP)2Cu. Thus, multiple mechanisms for generation of oxidative damage occur in (OP)2Cu-treated cells. Growth inhibition produced by OP or (OP)2Cu, as well as the low levels of strand scission produced by OP, was not reversed by scavengers.  相似文献   

2.
The interaction of 2,9-dimethyl-1,10-phenanthroline (neocuproine or NC) and its copper complex with Ehrlich ascites tumor cells was studied. NC is frequently used as a negative control in studies of in vitro DNA degradation by copper phenanthroline and has also found use as a potential inhibitor of damage from oxidative stress in biological systems. NC inhibited Ehrlich cell growth in monolayer culture over 48 h treatment by 50% at 0.05 nmol/10(5) cells. Addition of 5- to 100-fold ratios of CuCl2 to NC (at 0.035 nmol NC/10(5) cells) produced progressively more growth inhibition. Addition of 1:0.5 ratios of NC to CuCl2 over the range of NC concentrations 0.08-0.2 nmol/10(5) cells/mL resulted in DNA single-strand breakage during 1-h treatments as measured by DNA alkaline elution. Concomitant addition of catalase or dimethyl sulfoxide (DMSO) inhibited DNA strand scission, while superoxide dismutase enhanced breakage. Catalase and DMSO also inhibited induction of membrane permeability by the copper complex of NC. These cellular effects apparently result from the intracellular generation of hydroxyl radical from H2O2. NC facilitated the uptake of copper into cells, though it was initially bound as a copper-histidine-like complex. The internalized copper was reduced to Cu(I), bound mostly as (NC)2Cu(I). To explain the (NC)2Cu-dependent generation of hydroxyl radical, it is hypothesized that glutathione successfully competes for Cu(I), converting it to a redox-active form that can catalyze the reduction of molecular oxygen to .OH. Model studies support this view. Radical scavengers did not reverse growth inhibition produced by NC or NC + CuCl2.  相似文献   

3.
Peroxynitrite does not directly cause strand scission of genomic DNA. Rather, as we previously reported, the DNA cleavage is largely mediated by H(2)O(2) resulting from the dismutation of superoxide generated in the mitochondria upon peroxynitrite-dependent inhibition of complex III. The present study demonstrates that this process is strictly controlled by the availability of Ca(2+) in the mitochondrial compartment. Experiments using intact as well as permeabilized U937 cells showed that the DNA-damaging response evoked by peroxynitrite is enhanced by treatments causing an increase in mitochondrial Ca(2+) uptake and remarkably reduced under conditions leading to inhibition of mitochondrial Ca(2+) accumulation. An additional, important observation was that the source of the Ca(2+) mobilized by peroxynitrite is the ryanodine receptor; preventing the mobilization of Ca(2+) with ryanodine suppressed the mitochondrial formation of reactive oxygen species and the ensuing DNA strand scission. Identical results were obtained using PC12, C6, and THP-1 cells. These results, along with our previous findings indicating that the DNA damage induced by peroxynitrite is also suppressed by inhibition of the electron flow through complex I, e.g., by rotenone, or by the respiration-deficient phenotype, demonstrate that the mitochondrial formation of DNA-damaging species is critically regulated by the inhibition of complex III and by the availability of Ca(2+).  相似文献   

4.
The role of seleno-glutathione peroxidase (GSHPx; EC 1.11.1.9) in the cellular defense against oxidative stress was selectively investigated in novel cell models. Expression vectors designed to overexpress human GSHPx efficiently in a broad range of mammalian cells were used to transfect T47D human breast cells which contain very low levels of endogenous GSHPx. Several stable transfectants expressing GSHPx to various extents, up to 10-100 times more than parental cells, were isolated and characterized. Growth inhibition kinetics following transient exposure to increasing concentrations of H2O2, cumene hydroperoxide or menadione (an intracellular source of free radicals and reactive oxygen intermediates) showed that transfectants overexpressing GSHPx were considerably more resistant than control T47D cell derivatives to each of these oxidants. A sensitive DNA end-labeling procedure was used as a novel approach to compare relative extents of DNA strand breakage in these cells. In contrast to the extensive DNA damage induced in control transfectants by 1-h exposure to cytotoxic concentrations of menadione, the extent of DNA breakage detected in GSHPx-rich transfectants was remarkably reduced (6- to 9-fold, p less than 0.005).  相似文献   

5.
We recently reported that capsaicin (CAP) is capable of scavenging peroxyl radicals derived from 2,2'-azobis(2,4-dimethylvaleronitrile) as measured by electron spin resonance (ESR) spectroscopy. The present study describes the hydroxyl radical (HO*) scavenging ability of CAP as measured by DNA strand scission assay and by an ESR spin trapping technique with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The Fenton reaction [Fe(II)+ H(2)O(2) --> Fe(III) + HO* + HO(-)] was used as a source of HO*. The incubation of DNA with a mixture of FeSO(4) and H(2)O(2) caused DNA strand scission. The addition of CAP to the incubation mixture decreased the strand scission in a concentration-dependent manner. To understand the antioxidative mechanism of CAP, we used an ESR spin trapping technique. Kinetic competition studies using different concentrations of DMPO indicated that the decrease of the oxidative DNA damage was mainly due to the scavenging of HO* by CAP, not to the inhibition of the HO* generation system itself. We estimated the second order rate constants in the reaction of CAP and common HO* scavengers with HO* by kinetic competition studies. By comparison with the common HO* scavengers, CAP was found to scavenge HO* more effectively than mannitol, deoxyribose and ethanol, and to be equivalent to DMSO and benzoic acid, demonstrating that CAP is a potent HO* scavenger. The results suggest that CAP may act as an effective HO* scavenger as well as a peroxyl radical scavenger in biological systems.  相似文献   

6.
Positive results in the in vitro assay for chromosome aberrations sometimes occur with test chemicals that apparently do not react with DNA, being negative in tests for mutation in bacteria, for DNA strand breaks, and for covalent binding to DNA. These chromosome aberrations typically occur over a narrow concentration range at toxic doses, and with mitotic inhibition. Indirect mechanisms, including oxidative damage, cytotoxicity and inhibition of DNA synthesis induced by chemical exposure, may be involved. Understanding when such mechanisms are operating is important in evaluating potential mutagenic hazards, since the effects may occur only above a certain threshold dose. Here, we used two-parameter flow cytometry to assess DNA synthesis inhibition (uptake of bromodeoxyuridine [BrdUrd]) associated with the induction of aberrations in CHO cells by DNA-reactive and non-reactive chemicals, and to follow cell cycle progression. Aphidicolin (APC), a DNA polymerase inhibitor, induces aberrations without reacting with DNA; 50 μM APC suppressed BrdUrd uptake during a 3-h treatment to < 10% of control levels. Several new drug candidates induced aberrations concomitant with marked reductions in cell counts at 20 h (to 50–60% of controls) and suppression of BrdUrd uptake (<15% of control). Several non-mutagenic chemicals and a metabolic poison, which induce DNA double strand breaks and chromosome aberrations at toxic dose levels, also suppressed DNA synthesis. In contrast, the alkylating agents 4-nitroquinoline-1-oxide, mitomycin C, methylnitrosourea, ethylnitrosourea, methylmethane sulfonate and ethylmethane sulfonate, and a topoisomerase II inhibitor, etoposide, produced many aberrations at concentrations that were less toxic (cell counts ≥73% of controls) and gave little inhibition of DNA synthesis during treatment (BrdUrd uptake ≥85% of controls), although cell cycle delay was seen following the 3-h treatment. Thus, inhibition of DNA synthesis at the time of treatment is supporting evidence for an indirect mechanism of aberrations, when there is no direct DNA reactivity.  相似文献   

7.
Poly(ADP)ribose polymerase (PARP) may participate in cell survival, apoptosis and development of DNA damage. We investigated the role of PARP in transformed human pleural mesothelial (MeT-5A) and alveolar epithelial (A549) cells exposed from 0.05 to 5mM hydrogen peroxide (H(2)O(2)) or crocidolite asbestos fibres (1-10 microg/cm(2)) in the presence and absence of 3-aminobenzamide (ABA), a PARP inhibitor. The cells were investigated for the development of cell injury, DNA single strand breaks and depletion of the cellular high-energy nucleotides. Compared to H(2)O(2), fibres caused a minor decrease in cell viability and effect on the cellular high-energy nucleotide depletion, and a marginal effect on the development of DNA strand breaks when assessed by the single cell gel electrophoresis (the Comet assay). Inhibition of PARP transiently protected the cells against acute H(2)O(2) related irreversible cell injury when assessed by microculture tetrazolium dye (XTT) assay and potentiated oxidant related DNA damage when assessed by the Comet assay. However, PARP inhibition had no significant effect on fibre-induced cell or DNA toxicity with the exception of one fibre concentration (2 microg/cm(2)) in MeT-5A cells. Apoptosis is often associated with PARP cleavage and caspase activation. Fibres did not cause PARP cleavage or activation of caspase 3 further confirming previous results about relatively low apoptotic potential of asbestos fibres. In conclusion, maintenance of cellular high-energy nucleotide pool and high viability of asbestos exposed cells may contribute to the survival and malignant conversion of lung cells exposed to the fibres.  相似文献   

8.
The accumulation of DNA strand breaks and activation of ADP-ribosyltransferase (ADPRT) have recently been associated with cellular differentiation. Murine erythroleukemia (MEL) cells undergo erythropoietic differentiation when exposed to dimethyl sulfoxide (Me2SO) and several studies have suggested that DNA strand scission induced by this agent is a prerequisite for expression of the differentiated phenotype. Me2SO induction of MEL cells has also been associated with increases in ADPRT activity in one study, but not in another. We have monitored the effects of Me2SO on DNA strand breaks in preformed and replicating MEL cell DNA. The results clearly demonstrate that DNA fragmentation is not detectable during Me2SO induction of MEL differentiation, even in the presence of 3-aminobenzamide, an inhibitor of ADPRT. Further, these results are consistent with an absence of detectable changes in both endogenous and total potential ADPRT activity during Me2SO-induced MEL differentiation. These findings would argue against Me2SO induction of DNA strand scission and ADPRT in MEL cells undergoing differentiation.  相似文献   

9.
The subcellular site of action of a proteinaceous antitumor antibiotic neocarzinostatin (NCS) was studied using normal human lymphocytes, Epstein-Barr virus transformed lymphoblastoid cells, osmotically burst lymphoblastoid cells, and colicin E1 plasmid DNA. The rate of DNA strand break in these different types of DNA was found to be in the following order: Colicin DNA > burst cell DNA > lymphoblastoid cell DNA > normal lymphocyte DNA. Furthermore, fluorescence microscopy revealed that lymphoblastoid cells incorporated more fluorescein isothiocyanate labeled NCS than normal cells. High uptake of NCS in lymphoblastoid cells coincided with a high killing rate; low uptake of NCS in lymphocytes resulted in very little cell killing. Uptake velocity using fluorescein diacetate (FDA) also showed that the lymphoblastoid cells exhibited a higher uptake of FDA coinciding with a higher killing rate. The cell killing activity of NCS appears to be closely associated with the rate of intracellular uptake of NCS and subsequent direct degradation of DNA by the drug. This notion is reinforced by the reported finding that the dose required for DNA strand scission is only about 1/100 of that for the inhibition of cap formation. Thus DNA strand scission, rather than the cell membrane, appears to be the primary target of NCS. Enhanced incorporation of many substances is commonly observed upon transformation of cells by viruses, and our present results may provide an important clue toward the explanation of the selective toxicity toward tumor cells of NCS.  相似文献   

10.
Synthesis and biological evaluation of new derivatives of emodin   总被引:7,自引:0,他引:7  
Drugs containing an anthraquinone moiety such as daunorubicin (Daunoblastin) and mitoxantrone (Onkotrone) constitute some of the most powerful cytostatics. They suppress tumor growth mainly by intercalation into DNA and inhibition of topoisomerase II, and are suspected to generate free radicals leading to DNA strand scission. We established a novel strategy for obtaining new highly functionalized derivatives of emodin (1,3,8-trihydroxy-6-methyl-anthraquinone). Using emodin, DIB, and an appropriate amine as starting materials, we obtained a wide range of emodin-related structures by one-pot synthesis. Several of these derivatives showed stronger cytotoxic and cytostatic activity than emodin. In particular, compound 6 was highly effective on the HepG2 tumor cell line, but did not show any cytotoxicity on normal hepatocytes. In addition to this favorable feature, compound 6 revealed interesting binding properties to a recombinant fragment of the multi-drug-resistance transporter, pgp, and reversed the multi-drug-resistance phenotype of H4-II-E cells, thus making this compound a promising potential anti-tumor drug.  相似文献   

11.
12.
The effect of green tea extract (GTE) in Ehrlich ascites tumor cells (EATC) was studied with respect to changes in the intracellular kinase system involving mitogen-activated protein kinases (MAPKs) and cellular thiol. We have previously shown a reduction in viability of EATC and tyrosine phosphorylation of 42 and 45 kDa proteins by GTE and its polyphenolic component, Epigallocatechin (EGC) (D.O. Kennedy, S. Nishimura, T. Hasuma, Y. Yoshihisa, S. Otani, I. Matsui-Yuasa, Involvement of protein tyrosine phosphorylation in the effect of green tea polyphenols on Ehrlich ascites tumor cells in vitro, Chem. Biol. Interact. 110 (1998) 159-172). Furthermore, GTE and EGC significantly decreased both cellular non-protein and protein sulfhydryl levels in EATC, but replenishing thiol stores with N-acetylcysteine (NAC) caused a recovery in cell viability, and therefore SH groups were identified as a novel target of green tea cytotoxicity (D.O. Kennedy, M. Matsumoto, A. Kojima, I. Matsui-Yuasa, Cellular thiol status and cell death in the effect of green tea polyphenols in Ehrlich ascites tumor cells, Chem. Biol. Interact. 122 (1999) 59-71). In this study, we have observed the stimulation of three forms of MAPK, namely ERK1/2, JNK/SAPK and p38, by EGC, which were dose and time-dependent. These MAPK stimulations were found to be cellular thiol status-dependent events as NAC reversed these stimulations. Furthermore, inhibition of the p38 MAPK pathway using the p38 inhibitor SB203580 caused a marked dose-dependent reduction in the decrease in cell viability caused by EGC treatment. Inhibiting the Erk1/2 MAPK pathway using the MEK inhibitor PD098059 caused a slight change in the decrease in cell viability by EGC. These may suggest that the cytotoxicity associated with EGC was more associated with the other MAPKs than with ERK1/2. This may be the first study of its kind providing a novel evidence of a role for different forms of MAPKs in the antitumor effect of green tea polyphenols, especially EGC, in Ehrlich ascites tumor cells.  相似文献   

13.
Ferric nitrilotriacetate, which causes in vivo organ injury, induced lipid peroxidation and cell death in Ehrlich ascites tumor cells in vitro. The process was inhibited by butylated hydroxyanisole and enhanced by vitamin C and linolenic acid, indicating a close relationship between cytotoxicity and the lipid peroxidizing ability of Fe3+ NTA. The cytotoxicity was suppressed by glucose and a temperature below 20 degrees C. Lipid peroxidation of Fe3+ NTA-treated cells was greater at 0 degree C than at 37 degrees C, contrary to results with Fe3+ NTA-treated plasma membranes of Ehrlich ascites tumor cell. These results suggested that metabolism and membrane fluidity are important factors in the expression of the Fe3+ NTA-induced cytotoxicity. H2O2 showed a lower cytotoxicity than did Fe3+ NTA but a greater lipid peroxidizing ability. H2O2 appeared to damage the cells less, and was quenched rapidly by cellular metabolism unlike Fe3+ NTA. In transferrin-free medium, Ehrlich ascites tumor cell readily incorporated Fe3+ NTA, and iron uptake was greater than NTA-uptake in Fe3+ NTA-treated cells, suggesting that Ehrlich ascites tumor cell incorporated iron from Fe3+NTA and metabolized it into an inert form such as ferritin.  相似文献   

14.
CC-1065 is a very potent antitumor antibiotic capable of covalent and noncovalent binding to the minor groove of naked DNA. Upon thermal treatment, covalent adducts formed between CC-1065 and DNA generate strand breaks [Reynolds, R. L., Molineux, I. J., Kaplan, D.J., Swenson, D.H., & Hurley, L.H. (1985) Biochemistry 24, 6228-6237]. We have shown that this molecular damage can be detected following CC-1065 treatment of mammalian whole cells. Using alkaline sucrose gradient analysis, we observe thermally induced breakage of [14C]thymidine-prelabeled DNA from drug-treated African green monkey kidney BSC-1 cells. Very little damage to cellular DNA by CC-1065 can be detected without first heating the drug-treated samples. CC-1065 can also generate heat-labile sites within DNA during cell lysis and heating, subsequent to the exposure of cells to drug, suggesting that a pool of free and noncovalently bound drug is available for posttreatment adduct formation. This effect was controlled for by mixing [3H]thymidine-labeled untreated cells with the [14C]thymidine-labeled drug-treated samples. The lowest drug dose at which heat-labile sites were detected was 3 nM CC-1065 (3 single-stranded breaks/10(6) base pairs). This concentration reduced survival of BSC-1 cells to 0.1% in cytotoxicity assays. The generation of CC-1065-induced lesions in cellular DNA is time dependent (the frequency of lesions caused by a 60 nM treatment reaching a plateau at 2 h) and is not readily reversible. The induction of heat-labile sites in cellular DNA was confirmed by gel electrophoretic analyses of the damage to intracellular simian virus 40 (SV40) DNA in SV40-infected BSC-1 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Bleomycin is an anti-tumor agent whose cytotoxicity is related to the introduction of both single-stranded and double-stranded breaks in cellular DNA. In an assay using isolated nuclei, low levels of ethidium bromide substantially increased bleomycin induced release of nuclear chromatin. Treatment of mouse L1210 leukemia cells in vitro with low levels of ethidium bromide followed 1 hr later by bleomycin produced a synergistic effect that was 8 fold greater than that expected from the additive cytotoxicity of each drug alone. Interestingly, when the order of drug addition was reversed the drug synergism was much reduced (2 fold). The combination of DNA unwinding and strand scission agents may represent a novel and rational approach to the chemotherapy of cancer.  相似文献   

16.
Proliferating cell nuclear antigen (PCNA) assumes an indispensable role in supporting cellular DNA replication and repair by organizing numerous protein components of these pathways via a common PCNA-interacting sequence motif called a PIP-box. Given the multifunctional nature of PCNA, the selective inhibition of PIP-box-mediated interactions may represent a new strategy for the chemosensitization of cancer cells to existing DNA-directed therapies; however, promiscuous blockage of these interactions may also be universally deleterious. To address these possibilities, we utilized a chemical strategy to irreversibly block PIP-box-mediated interactions. Initially, we identified and validated PCNA methionine 40 (M40) and histidine 44 (H44) as essential residues for PCNA/PIP-box interactions in general and, more specifically, for efficient PCNA loading onto chromatin within cells. Next, we created a novel small molecule incorporating an electrophilic di-chloro platinum moiety that preferentially alkylated M40 and H44 residues. The compound, designated T2Pt, covalently cross-linked wild-type but not M40A/H44A PCNA, irreversibly inhibited PCNA/PIP-box interactions, and mildly alkylated plasmid DNA in vitro. In cells, T2Pt persistently induced cell cycle arrest, activated ATR-Chk1 signaling and modestly induced DNA strand breaks, features typical of cellular replication stress. Despite sustained activation of the replication stress response by the compound and its modestly genotoxic nature, T2Pt demonstrated little activity in clonogenic survival assays as a single agent, yet sensitized cells to cisplatin. The discovery of T2Pt represents an original effort directed at the development of irreversible PCNA inhibitors and sets the stage for the discovery of analogues more selective for PCNA over other cellular nucleophiles.  相似文献   

17.
We examined the effect of a newly synthesized DNA-binding ligand, quinacrine-netropsin hybrid molecule (QN), on cytotoxicity, apoptosis, and DNA strand breaks induced by an enediyne antitumor antibiotic, C1027. QN significantly enhanced C1027-induced cellular DNA strand breaks, caspase-3 activation, and DNA ladder formation, characteristic of apoptosis, in human HL-60 cells. Flow cytometry revealed that C1027-induced intracellular H(2)O(2) generation was enhanced by QN, suggesting that QN enhances C1027-induced cytotoxic effect through H(2)O(2)-mediated apoptosis. QN also significantly enhanced C1027-induced apoptosis in BJAB cells, and the inhibition of apoptosis was observed in BJAB cells transfected with Bcl-2 gene. The experiment using (32)P-labeled DNA fragments showed that the addition of QN enhanced C1027-induced double-stranded DNA cleavage at the 5'-AGG-3'/3'-TCC-5' sequence (cutting sites are underlined). These results suggest that QN enhances C1027-induced antitumor effect via DNA cleavage and apoptosis. The present study shows a novel approach to the potentially effective anticancer therapy.  相似文献   

18.
The DNA strand scission activities of three positional isomers of Fe(III) meso-tetra(N-methylpyridyl)porphine (Fe(III)TnMPyP, where n = 2, 3 or 4) have been investigated using PM2 DNA as a substrate. A significant degree of strand scission activity was noted in the presence of oxygen without the addition of a reducing agent. This activity was probably due to the presence of reducing agents in the agarose gels used to separate the DNA forms, as higher levels were recorded with reducing agents added to the strand scission mixture. The relative order of strand scission activity in the absence of added reducing agents was found to be Fe(III)T2MPyP greater than Fe(III)T4MPyP greater than Fe(III)T3MPyP. Comparative studies were also made with Fe(II)bleomycin. High concentrations of some reducing agents inhibited strand scission. Oxygen was required to produce optimal strand scission activity for all three porphyrins. It was also noted from spectroscopic measurements that the reduced porphyrins were degraded in the presence of oxygen. Studies with a series of potential strand scission inhibitors suggest that hydrogen peroxide and possibly peroxy radicals are intermediates in the reaction mechanism, while diffusible hydroxyl radicals appear to be excluded. However, superoxide radicals cannot be ruled out.  相似文献   

19.
Soh Y  Shin MH  Lee JS  Jang JH  Kim OH  Kang H  Surh YJ 《Mutation research》2003,544(2-3):129-142
A series of naturally occurring isoquinoline alkaloids, besides their distribution in the environment and presence in certain food stuffs, have been detected in human tissues including particular regions of brain. An example is salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) that not only induces neuronal cell death, but also causes DNA damage and genotoxicity. Tetrahydropapaveroline [THP; 6,7-dihydroxy-1-(3',4'-dihydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline], a dopamine-derived tetrahydroisoquinoline alkaloid, has been reported to inhibit mitochondrial respiration and is considered to contribute to neurodegeneration implicated in Parkinson's disease. Since THP bears two catechol moieties, the compound may readily undergo redox cycling to produce reactive oxygen species (ROS) as well as toxic quinoids. In the present study, we have examined the capability of THP to cause oxidative DNA damage and cell death. Incubation of THP with phiX174 supercoiled DNA or calf thymus DNA in the presence of cupric ion caused substantial DNA damage as determined by strand scission or formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), respectively. THP plus copper-induced DNA damage was ameliorated by some ROS scavengers/antioxidants and catalase. Treatment of C6 glioma cells with THP led to a concentration-dependent reduction in cell viability, which was prevented by the antioxidant N-acetyl-L-cysteine. When these cells were treated with 10microM THP, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were rapidly activated via phosphorylation, whereas activation of extracellular signal-regulated protein kinase (ERK) was inhibited. Furthermore, pretreatment with inhibitors of JNK and p38 MAPK rescued the glioma cells from THP-induced cytotoxicity, suggestive of the involvement of these kinases in THP-induced C6 glioma cell damage.  相似文献   

20.
Multidrug resistance is a major obstacle for the successful use of chemotherapy. The multidrug resistance phenotype is often attributed to overexpression of P-glycoprotein, which is an energy-dependent drug efflux pump. We investigated a new strategy to overcome multidrug resistance, using purified bovine serum amine oxidase, which generates two major toxic products from the polyamine spermine. The cytotoxicity of the aldehyde(s) and H2O2, produced by the enzymatic oxidation of micromolar concentrations of spermine, was evaluated in multidrug resistant Chinese hamster ovary cells CHRC5 with overexpression of P-glycoprotein, using a clonogenic cell survival assay. We examined the ability of hyperthermia (42 degrees C), and inhibition of cellular detoxification systems, to sensitize multidrug resistant cells to spermine oxidation products. Severe depletion of intracellular glutathione was achieved using L-buthionine sulfoximine and inhibition of glutathione S-transferase by ethacrynic acid. CH(R)C5 cells showed no resistance to the toxic oxidation products of spermine, relative to drug-sensitive AuxB1 cells. Exogenous catalase protected cells against cytotoxicity of H2O2, but spermine-derived aldehyde(s) still caused some cytotoxicity. Hyperthermia (42 degrees C) enhanced cytotoxicity of spermine oxidation products. Cytotoxic responses in CH(R)C5 cells were compared to the drug-sensitive cells, to determine whether there are differential responses. CH(R)C5 cells were more sensitive to the cytotoxic effect of spermine oxidation products under more extreme conditions (higher temperature, higher spermine concentration, and longer exposure time). Glutathione depletion or glutathione S-transferase inhibition also led to enhanced cytotoxicity of spermine oxidation products in CH(R)C5 and AuxB1 cells. Our findings suggest that hyperthermia, combined with toxic oxidation products generated from spermine and amine oxidase, could be useful for eliminating drug-sensitive and multidrug resistant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号