首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NIH3T3 mouse fibroblasts generate reactive oxygen species (ROS) and release taurine following exposure to hypotonic medium and to isotonic medium containing the lipase activator melittin. The swelling-induced taurine release is potentiated by H2O2, the calmodulin antagonist W7, and ATP, but inhibited by the antioxidant butulated hydroxytoluene (BHT), the NAD(P)H oxidase inhibitor diphenylene iodonium (DI), and the iPLA2 inhibitor bromoenol lactone (BEL). The swelling-induced ROS production is also inhibited by BHT and BEL. H2O2 does not affect the volume set point for activation of the volume-sensitive taurine efflux. The 5-lipoxygenase (5-LO) inhibitor ETH 615-139 impairs the swelling-induced taurine efflux in the absence as well as in the presence of H2O2. The melittin-induced taurine release is, in analogy with the swelling-induced taurine release, potentiated by H2O2 and inhibited by BHT, DI, BEL, ETH 615-139 and anion channel blockers. Thus, swelling- and melittin-induced cell signalling and taurine release involve joint elements. The swelling-induced taurine efflux is potentiated by the protein tyrosine phosphatase inhibitor vanadate, and the potentiating effect of H2O2 and vanadate is impaired in the presence of protein tyrosine kinase inhibitor genistein. It is suggested that (i) iPLA2 and 5-LO activity is required for the swelling-induced activation of taurine efflux from NIH3T3 cells, (ii) ROS are produced subsequent to the PLA2 activation by the NAD(P)H oxidase complex, and (iii) ROS inhibit a protein tyrosine phosphatase (PTP1B) causing a potentiation of the swelling-induced taurine release.  相似文献   

2.
The properties and regulation of volume-activated taurine efflux from MDA-MB-231 and MCF-7 cells have been investigated. Volume-activated taurine release from both cell lines was almost completely inhibited by diidosalicylate. DIDS , was more effective at inhibiting swelling-induced taurine release from MCF-7 than from MDA-MB-231 cells. On the basis of comparing taurine, Cl(-) and I(-) efflux time courses, it appears that volume-activated taurine efflux does not utilize volume-sensitive anion channels in MDA-MB- 231 and MCF-7 cells. Extracellular ATP stimulated volume-activated taurine release from MDA-MB-231 cells but not from MCF-7 cells. The effect of ATP was mimicked by UTP and was dependent upon external calcium and inhibited by suramin. However, suramin inhibited volume-activated taurine efflux from both MDA-MB-231 and MCF-7 cells even in the absence of exogenously added ATP suggesting that it acts directly on the taurine efflux pathway and/or is inhibiting the effect of ATP released from the cells. Volume-activated taurine efflux from MDA-MB-231 cells was stimulated by ionomycin. In contrast, ionomycin had no effect on taurine release from MCF-7 cells. Adenosine also stimulated volume-activated taurine efflux from MDA-MB-231 cells. The results suggest that purines regulate taurine transport in MDA-MB- 231 cells via more than one type of receptor.  相似文献   

3.
In response to osmotic cell swelling, Intestine 407 cells react with a rapid and transient activation of phospholipase D (PLD). To investigate the role of PLD during the regulatory volume decrease, cells were treated with 1-butanol resulting in a depletion of PLD substrates. Activation of volume-regulated anion channels, but not the cell swelling-induced release of taurine, was largely inhibited in the presence of low concentrations of 1-butanol. In addition, hypotonicity-induced exocytosis, ATP release and subsequent endocytosis were found to be largely abrogated. The results support a model of cell volume regulation in which PLD plays an essential role in the cell swelling-induced vesicle cycling and in the activation of volume-sensitive anion channels.  相似文献   

4.
Taurine is an important osmolyte involved in cell volume regulation. During regulatory volume decrease it is released via a volume-sensitive organic osmolyte/anion channel. Several molecules have been suggested as candidates for osmolyte release. In this study, we chose three of these, namely ClC-2, ClC-3 and ICln, because of their expression in rat astrocytes, a cell type which is known to release taurine under hypotonic stress, and their activation by hypotonic shock. As all three candidates were also suggested to be chloride channels, we investigated their permeability for both chloride and taurine under isotonic and hypotonic conditions using the Xenopus laevis oocyte expression system. We found a volume-sensitive increase of chloride permeability in ClC-2-expressing oocytes only. Yet, the taurine permeability was significantly increased under hypotonic conditions in oocytes expressing any of the tested candidates. Further experiments confirmed that the detected taurine efflux does not represent unspecific leakage. These results suggest that ClC-2, ClC-3 and ICln either participate in taurine transport themselves or upregulate an endogenous oocyte osmolyte channel. In either case, the taurine efflux of oocytes not being accompanied by an increased chloride flux suggests that taurine and chloride can be released via two separate pathways.  相似文献   

5.
Swelling of hepatocytes and other epithelia activates volume-sensitive ion channels that facilitate fluid and electrolyte efflux to restore cell volume, but the responsible signaling pathways are incompletely defined. Previous work in model HTC rat hepatoma cells has indicated that swelling elicits ATP release, which stimulates P2 receptors and activates Cl(-) channels, and that this mechanism is essential for hepatocellular volume recovery. Since P2 receptors are generally coupled to Ca(2+) signaling pathways, we determined whether hepatocellular swelling affected cytosolic [Ca(2+)], and if this involved a purinergic mechanism. Exposure of HTC cells to hypotonic media evoked an increase in cytosolic [Ca(2+)], which was followed by activation of K(+) and Cl(-) currents. Maneuvers that interfered with swelling-induced increases in cytosolic [Ca(2+)], including extracellular Ca(2+) removal and intracellular Ca(2+) store depletion with thapsigargin, inhibited activation of membrane currents and volume recovery. However, the swelling-induced increases in cytosolic [Ca(2+)] were unaffected by either extracellular ATP depletion with apyrase or blockade of P2 receptors with suramin. These findings indicate that swelling elicits an increase in hepatocellular Ca(2+), which is essential for ion channel activation and volume recovery, but that this increase does not stem from activation of volume-sensitive P2 receptors. Collectively, these observations imply that regulatory responses to hepatocellular swelling involve a dual requirement for a purinergic-independent Ca(2+) signaling cascade and a Ca(2+)-independent purinergic signaling pathway.  相似文献   

6.
The present work sets out to investigate how Ca2+ regulates the volume-sensitive taurine-release pathway in HeLa cells. Addition of Ca2+-mobilizing agonists at the time of exposure to hypotonic NaCl medium augments the swelling-induced taurine release and subsequently accelerates the inactivation of the release pathway. The accelerated inactivation is not observed in hypotonic Ca2+-free or high-K+ media. Addition of Ca2+-mobilizing agonists also accelerates the regulatory volume decrease, which probably reflects activation of Ca2+-activated K+ channels. The taurine release from control cells and cells exposed to Ca2+ agonists is equally affected by changes in cell volume, application of DIDS and arachidonic acid, indicating that the volume-sensitive taurine leak pathway mediates the Ca2+-augmented taurine release. Exposure to Ca2+-mobilizing agonists prior to a hypotonic challenge also augments a subsequent swelling-induced taurine release even though the intracellular Ca2+-concentration has returned to the unstimulated level. The Ca2+-induced augmentation of the swelling-induced taurine release is abolished by inhibition of calmodulin, but unaffected by inhibition of calmodulin-dependent kinase II, myosin light chain kinase and calcineurin. The effect of Ca2+-mobilizing agonists is mimicked by protein kinase C (PKC) activation and abolished in the presence of the PKC inhibitor Gö6850 and following downregulation of phorbol ester-sensitive PKC isoforms. It is suggested that Ca2+ regulates the volume-sensitive taurine-release pathway through activation of calmodulin and PKC isoforms belonging to the novel subclass (nPKC).This revised version was published online in June 2005 with a corrected cover date.  相似文献   

7.
The putative role of lysophospholipids in activation and regulation of the volume-sensitive taurine efflux was investigated in HeLa cells using tracer technique. Lysophosphatidylcholine (LPC, 10 μm) with oleic acid increased taurine efflux during hypotonic and isotonic conditions. Substituting palmitic or stearic acid for oleic acid enhanced taurine release during isotonic conditions, whereas ethanolamine, serine or inositol containing lysophospholipids were ineffective. High concentrations of LPC (25 μm) induced Ca2+ influx, loss of adenosine nucleotides, taurine and the Ca2+-sensitive probe Fura-2, and thus reflected a general breakdown of the membrane permeability barrier. Low concentrations of LPC (5–10 μm) solely induced taurine efflux. The LPC-induced taurine release was unaffected by anion channel blockers (DIDS, MK196) and the 5-lipoxygenase inhibitor ETH 615-139, which all blocked the volume sensitive taurine efflux. Furthermore, LPC-induced taurine release was reduced by antioxidants (NDGA, vitamin E) and the protein tyrosine kinase inhibitor genistein. The swelling-induced taurine efflux was in the absence of LPC unaffected by vitamin E, blocked by genistein, and increased by H2O2 and the protein tyrosine phosphatase inhibitor vanadate. It is suggested that low concentrations of LPC permeabilizes the plasma membrane in a Ca2+-independent process that involves generation of reactive oxygen species and tyrosine phosphorylation, and that LPC is not a second messenger in activation of the volume sensitive taurine efflux in HeLa cells. Received: 17 December 1999/Revised: 13 April 2000  相似文献   

8.
To examine a possible relation between the swelling-induced ATP release pathway and the volume-sensitive Cl(-) channel, we measured the extracellular concentration of ATP released upon osmotic swelling and whole-cell volume-sensitive Cl(-) currents in a human epithelial cell line, Intestine 407, which lacks expression of cystic fibrosis transmembrane conductance regulator (CFTR). Significant release of ATP was observed within several minutes after a hypotonic challenge (56-80% osmolality) by the luciferin/luciferase assay. A carboxylate analogue Cl(-) channel blocker, 5-nitro-2-(3-phenylpropylamino)-benzoate, suppressed ATP release in a concentration-dependent manner with a half-maximal inhibition concentration of 6.3 microM. However, swelling-induced ATP release was not affected by a stilbene-derivative Cl(-) channel blocker, 4-acetamido-4'-isothiocyanostilbene at 100 microM. Glibenclamide (500 microM) and arachidonic acid (100 microM), which are known to block volume-sensitive outwardly rectifying (VSOR) Cl(-) channels, were also ineffective in inhibiting the swelling-induced ATP release. Gd(3+), a putative blocker of stretch-activated channels, inhibited swelling-induced ATP release in a concentration-dependent manner, whereas the trivalent lanthanide failed to inhibit VSOR Cl(-) currents. Upon osmotic swelling, the local ATP concentration in the immediate vicinity of the cell surface was found to reach approximately 13 microM by a biosensor technique using P2X(2) receptors expressed in PC12 cells. We have raised antibodies that inhibit swelling-induced ATP release from Intestine 407 cells. Earlier treatment with the antibodies almost completely suppressed swelling-induced ATP release, whereas the activity of VSOR Cl(-) channel was not affected by pretreatment with the antibodies. Taking the above results together, the following conclusions were reached: first, in a CFTR-lacking human epithelial cell line, osmotic swelling induces ATP release and increases the cell surface ATP concentration over 10 microM, which is high enough to stimulate purinergic receptors; second, the pathway of ATP release is distinct from the pore of the volume-sensitive outwardly rectifying Cl(-) channel; and third, the ATP release is not a prerequisite to activation of the Cl(-) channel.  相似文献   

9.
10.
Hypotonic exposure provokes the mobilization of arachidonic acid, production of ROS, and a transient increase in taurine release in Ehrlich Lettre cells. The taurine release is potentiated by H2O2 and the tyrosine phosphatase inhibitor vanadate and reduced by the phospholipase A2 (PLA2) inhibitors bromoenol lactone (BEL) and manoalide, the 5-lipoxygenase (5-LO) inhibitor ETH-615139, the NADPH oxidase inhibitor diphenyl iodonium (DPI), and antioxidants. Thus, swelling-induced taurine efflux in Ehrlich Lettre cells involves Ca2+-independent (iPLA2)/secretory PLA2 (sPLA2) plus 5-LO activity and modulation by ROS. Vanadate and H2O2 stimulate arachidonic acid mobilization and vanadate potentiates ROS production in Ehrlich Lettre cells and NIH3T3 fibroblasts under hypotonic conditions. However, vanadate-induced potentiation of the volume-sensitive taurine efflux is, in both cell types, impaired in the presence of BEL and DPI and following restoration of the cell volume. Thus, potentiation of the volume-sensitive taurine efflux pathway following inhibition of tyrosine phosphatase activity reflects increased arachidonic acid mobilization and ROS production for downstream signaling. Vanadate delays the inactivation of volume-sensitive taurine efflux in NIH3T3 cells, and this delay is impaired in the presence of DPI. Vanadate has no effect on the inactivation of swelling-induced taurine efflux in Ehrlich Lettre cells. It is suggested that increased tyrosine phosphorylation of regulatory components of NADPH oxidase leads to increased ROS production and a subsequent delay in inactivation of the volume-sensitive taurine efflux pathway and that NADPH oxidase or antioxidative capacity differ between NIH3T3 and Ehrlich Lettre cells. organic osmolytes; reactive oxygen species; vanadate; H2O2; tyrosine phosphatases; arachidonic acid mobilization  相似文献   

11.
Cell-swelling, induced by a hyposmotic shock, activates the release of taurine from lactating rat mammary tissue expiants. The degree of stimulation of taurine efflux was dependent upon the extent of cell-swelling. Volume-sensitive taurine release was attenuated by the anion transport inhibitors NPPB, DIOA, DIDS, niflumate, flufenamate, mefenamate and diiodosalicylate but not by salicylate. Cell-swelling, following a hyposmotic challenge, did not increase the unidirectional efflux of radiolabelled I or D-asparate from mammary tissue expiants. The results suggest that although mammary tissue expresses a volume-sensitive amino acid transport system which is inhibited by anion transport blockers the pathway has no identity with volume-activated anion channels.  相似文献   

12.
Human Intestine 407 cells respond to osmotic cell swelling by the activation of Cl(-)- and K(+)-selective ionic channels, as well as by stimulating an organic osmolyte release pathway readily permeable to taurine and phosphocholine. Unlike the activation of volume-regulated anion channels (VRAC), activation of the organic osmolyte release pathway shows a lag time of approximately 30-60 s, and its activity persists for at least 8-12 min. In contrast to VRAC activation, stimulation of organic osmolyte release did not require protein tyrosine phosphorylation, active p21(rho), or phosphatidylinositol 3-kinase activity and was insensitive to Cl(-) channel blockers. Treatment of the cells with putative organic anion transporter inhibitors reduced the release of taurine only partially or was found to be ineffective. The efflux was blocked by a subclass of organic cation transporter (OCT) inhibitors (cyanine-863 and decynium-22) but not by other OCT inhibitors (cimetidine, quinine, and verapamil). Brief treatment of the cells with phorbol esters potentiated the cell swelling-induced taurine efflux, whereas addition of the protein kinase C (PKC) inhibitor GF109203X largely inhibited the response, suggesting that PKC is involved. Increasing the level of intracellular Ca(2+) by using A-23187- or Ca(2+)-mobilizing hormones, however, did not affect the magnitude of the response. Taken together, the results indicate that the hypotonicity-induced efflux of organic osmolytes is independent of VRAC and involves a PKC-dependent step.  相似文献   

13.
Summary Taurine influx is inhibited and taurine efflux accelerated when the cell membrane of Ehrlich ascites tumor cells is depolarized. Taurine influx is inhibited at acid pH partly due to the concomitant depolarization of the cell membrane partly due to a reduced availability of negatively charged free carrier. These results are in agreement with a 2Na, 1Cl, 1taurine cotransport system which is sensitive to the membrane potential due to a negatively charged empty carrier. Taurine efflux from Ehrlich cells is stimulated by addition of LTD4 and by swelling in hypotonic medium. Cell swelling in hypotonic medium is known to result in stimulation of the leukotriene synthesis and depolarization of the cell membrane. The taurine efflux, activated by cell swelling, is dramatically reduced when the phospholipase A2 is inhibited indirectly by addition of the anti-calmodulin drug pimozide, or directly by addition of RO 31-4639. The inhibition is in both cases lifted by addition of LTD4. The swelling-induced taurine efflux is also inhibited by addition of the 5-lipoxygenase inhibitors ETH 615-139 and NDGA. It is concluded that the swelling-induced activation of the taurine leak pathway involves a release of arachidonic acid from the membrane phospholipids and an increased oxidation of arachidonic acid into leukotrienes via the 5-lipoxygenase pathway. LTD4 seems to act as a second messenger for the swelling induced activation of the taurine leak pathway either directly or indirectly via its activation of the Cl channels, i.e., via a depolarization of the cell membrane.  相似文献   

14.
Reactive oxygen species (ROS) are produced in NIH3T3 fibroblasts during hypotonic stress, and H(2)O(2) potentiates the concomitant release of the organic osmolyte taurine (Lambert IH. J Membr Biol 192: 19-32, 2003). The increase in ROS production [5-(and-6)-carboxy-2', 7'-dichlorodihydrofluorescein diacetate fluorescence] is detectable after a reduction in the extracellular osmolarity from 335 mosM (isotonic) to 300 mosM and reaches a maximal value after a reduction to 260 mosM. The swelling-induced ROS production is reduced by the flavoprotein inhibitor diphenylene iodonium chloride (25 microM) but is unaffected by the nitric oxide synthase inhibitor N omega-nitro-l-arginine methyl ester, indicating that the volume-sensitive ROS production is NADPH oxidase dependent. NIH3T3 cells express the NADPH oxidase components: p22 phox, a NOX4 isotype; p47 phox; and p67 phox (real-time PCR). Exposure to the Ca2+-mobilizing agonist ATP (10 microM) potentiates the release of taurine but has no effect on ROS production under hypotonic conditions. On the other hand, addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) or the lipid messenger lysophosphatidic acid (LPA, 10 nM) potentiates the swelling-induced taurine release as well as the ROS production. Overexpression of Rac1 or p47 phox or p47 phox knockdown [small interfering (si)RNA] had no effect on the swelling-induced ROS production or taurine release. NOX4 knockdown (siRNA) impairs the increase in the ROS production and the concomitant taurine release following osmotic exposure. It is suggested that a NOX4 isotype plus p22 phox account for the swelling-induced increase in the ROS production in NIH3T3 cells and that the oxidase activity is potentiated by PKC and LPA but not by Ca2+.  相似文献   

15.
Betaine, taurine, and inositol participate as osmolytes in liver cell volume homeostasis and interfere with cell function. In this study we investigated whether osmolytes are also released from the intact liver independent of osmolarity changes. In the perfused rat liver, phagocytosis of carbon particles led to a four- to fivefold stimulation of taurine efflux into the effluent perfusate above basal release rates. This taurine release was inhibited by 70-80% by the anion exchange inhibitor DIDS or by pretreatment of the rats with gadolinium chloride. Administration of vasopressin, cAMP, extracellular ATP, and glucagon also increased release of betaine and/or taurine, whereas insulin, extracellular UTP, and adenosine were without effect. In isolated liver cells, it was shown that parenchymal cells and sinusoidal endothelial cells, but not Kupffer cells and hepatic stellate cells, release osmolytes upon hormone stimulation. This may be caused by a lack of hormone receptor expression in these cells, because single-cell fluorescence measurements revealed an increase of intracellular calcium concentration in response to vasopressin and glucagon in parenchymal cells and sinusoidal endothelial cells but not in Kupffer cells and hepatic stellate cells. The data show that Kupffer cells release osmolytes during phagocytosis via DIDS-sensitive anion channels. This mechanism may be used to compensate for the increase in cell volume induced by the ingestion of phagocytosable material. The physiological significance of hormone-induced osmolyte release remains to be evaluated.  相似文献   

16.
The majority of mammalian cells demonstrate regulatory volume decrease (RVD) following swelling caused by hyposmotic exposure. A critical signal initiating RVD is activation of nucleotide receptors by ATP. Elevated extracellular ATP in response to cytotoxic cell swelling during pathological conditions also may initiate loss of taurine and other intracellular osmolytes via anion channels. This study characterizes neuronal ATP-activated anion current and explores its role in net loss of amino acid osmolytes. To isolate anion currents, we used CsCl as the major electrolyte in patch electrode and bath solutions and blocked residual cation currents with NiCl(2) and tetraethylammonium. Anion currents were activated by extracellular ATP with a K(m) of 70 microM and increased over fourfold during several minutes of ATP exposure, reaching a maximum after 9.0 min (SD 4.2). The currents were blocked by inhibitors of nucleotide receptors and volume-regulated anion channels (VRAC). Currents showed outward rectification and inactivation at highly depolarizing membrane potentials, characteristics of swelling-activated anion currents. P2X agonists failed to activate the anion current, and an inhibitor of P2X receptors did not block the effect of ATP. Furthermore, current activation was observed with extracellular ADP and 2-(methylthio)adenosine 5'-diphosphate, a P2Y(1) receptor-specific agonist. Much less current activation was observed with extracellular UTP, suggesting the response is mediated predominantly by P2Y(1) receptors. ATP caused a dose-dependent loss of taurine and alanine that could be blocked by inhibitors of VRAC. ATP did not inhibit the taurine uptake transporter. Thus extracellular ATP triggers a loss of intracellular organic osmolytes via activation of anion channels. This mechanism may facilitate neuronal volume homeostasis during cytotoxic edema.  相似文献   

17.
The volume-sensitive outwardly rectifying (VSOR) anion channel provides a major pathway for anion transport during cell volume regulation. It is typically activated in response to cell swelling, but how the channel senses the swelling remains unclear. Meanwhile, we recently found that in mouse astrocytes the channel is activated by an inflammatory chemical mediator, bradykinin, without cell swelling and that the activation is regulated via high concentration regions of intracellular Ca(2+) ([Ca(2+)](i)) in the immediate vicinity of open Ca(2+)-permeable channels, so-called Ca(2+) nanodomains. Here we investigated whether a similar mechanism is involved in the swelling-induced VSOR channel activation in the astrocytes. A hypotonic stimulus (25% reduction in osmolality) caused the [Ca(2+)](i) rises in the astrocytes, and the rises were abolished in the presence of an ATP-degrading enzyme, apyrase (10 U/ml). Application of ATP (100 μM) under isotonic conditions generated the current through VSOR channels via Ca(2+) nanodomains, as bradykinin does. The current induced by the hypotonic stimulus was suppressed by ~40% in the Ca(2+)-depleted condition where the ATP-induced VSOR current was totally prevented. Thus the swelling-induced VSOR channel activation in mouse astrocytes is partly regulated via Ca(2+) nanodomains, whose generation is triggered by an autocrine action of ATP.  相似文献   

18.
It has been shown that cell swelling stimulates the efflux of taurine from MCF-7 and MDA-MB-231 cells via a pathway which has channel-like properties. The purpose of this study was to examine the specificity of the volume-activated taurine efflux pathway in both cell lines. A hyposmotic shock increased the efflux of glycine, L-alanine, AIB (α-aminoisobutyric acid), D-aspartate but not L-leucine from MDA-MB-231 and MCF-7 cells. It was evident that the time course of activation/inactivation of those amino acids whose efflux was affected by cell swelling was similar to that of volume-activated taurine efflux. The effect of exogenous ATP on swelling-induced glycine, AIB and D-aspartate efflux from MDA-MB-231 cells was similar to that found on taurine efflux. In addition, volume-activated AIB efflux from MDA-MB-231 cells, like that of swelling-induced taurine efflux, was inhibited by diiodosalicylate. Tamoxifen inhibited volume-activated taurine release from both MDA-MB-231 and MCF-7 cells. The results suggest that neutral and anionic α-amino acids are able to utilize the volume-activated taurine efflux pathway in both cell lines. The effect of tamoxifen on breast cancer growth may, in part, be related to perturbations in cell volume regulation.  相似文献   

19.
BACKGROUND INFORMATION: Recent work suggests that part of the control of vasopressin output is mediated by taurine released from pituicytes, the astroglial cells of the neurohypophysis. Taurine release, in turn, is stimulated by hypotonic conditions and by vasopressin itself. As adenosine is generated from ATP co-released with vasopressin, it appeared important to study its effects on taurine efflux from pituicytes. RESULTS: We measured radioactive efflux from cultured pituicytes and whole neurohypophyses pre-loaded with [(3)H]taurine. Cultured pituicytes were also used to study adenosine-receptor mRNA expression. Taurine efflux elicited by hypotonic shocks is approximately 30-50% smaller in the presence of 10 microM adenosine or 1 microM NECA (5'-N-ethylcarboxamidoadenosine). Both compounds also inhibited basal efflux in a manner that was not immediately reversible. Agonists of the adenosine A1-, A2a- or A3-receptor subtypes have no relevant effect on basal taurine release, and the A1-receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) has no effect on the inhibition of release by NECA. In turn, the A2b-receptor antagonists MRS 1706 {N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamide} or alloxazine partially reverse the inhibition of basal or hypotonicity-evoked efflux by NECA. Both A1- and A2b-receptor mRNAs are expressed in pituicytes, which is consistent with an A1-receptor-mediated effect on cell morphology and an A2b-receptor-mediated effect on taurine release. Forskolin and dibutyryl cAMP mimic the inhibitory effects of purinergics on basal taurine efflux, and the adenylate cyclase inhibitor DDA (2',5'-dideoxyadenosine) partially reverses the inhibition of the hypotonic response by NECA.Conclusions. Our results suggest that purinergic inhibition of taurine efflux from pituicytes operates through A2b receptors coupled to intracellular cAMP increase. They point to a possible modulation of neurohypophysial hormone output by endogenous adenosine released in either physiological or pathological situations.  相似文献   

20.
BACKGROUND INFORMATION: ATP is released from many cell types exposed to hypo-osmotic shock and is involved in RVD (regulatory volume decrease). Purinergic signalling events have been extensively investigated in mammals, but not in marine teleosteans. RESULTS: The effect of hypo-osmotic shock on ATP release was examined in isolated hepatocytes from turbot (Scophthalmus maximus), a marine flatfish. Hypo-osmotic stress (240 mOsm x kg(-1)) induced a significant increase in ATP efflux, and was inhibited by a potential CFTR (cystic fibrosis transmembrane conductance regulator) inhibitor, glibenclamide, but not by the MDR1 (multidrug resistance 1) P-glycoprotein inhibitor, verapamil. ATP efflux could be a cAMP-dependent process, as IBMX (isobutylmethylxanthine) and forskolin triggered the process under iso-osmotic conditions. Protein kinases, including protein kinase C, could also be involved, as staurosporine and chelerythrine inhibited the mechanism. Calcium could contribute to ATP efflux as ionomycin, a calcium ionophore, elicited a rapid release under iso-osmotic conditions, and chelation using EGTA abolished ATP release under hypo-osmotic conditions. RVD was partially abolished by apyrase, an ATP scavenger, and suramin, a purinoceptor antagonist. Moreover, hypo-osmotic shock induced a rise in intracellular calcium which could be involved in RVD. Since extracellular ATP triggered an increase in cellular free-calcium content under iso-osmotic conditions, our results could indicate that hypo-osmotic-induced ATP efflux contributes to RVD in turbot hepatocytes by stimulating purinergic receptors, which may lead to activation of a calcium signalling pathway. CONCLUSIONS: These data provide the first evidence of volume-sensitive ATP signalling for volume maintenance in a marine teleost fish cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号