首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ant communities of two adjacent sites bearing markedly different vegetation (heath and mallee) were studied using quadrat counts and pitfall traps in semi-arid northwestern Victoria. The ants were extremely abundant and rich in species (86 species from 27 genera were recorded from two 50 m × 25 m plots within 25 m of each other) and were dominated by species ofMonomorium and Iridomyrmex. Pronounced site differences in species composition were found, with 73% of the most abundant species showing a strong site preference. The ants exhibited marked seasonality: activity was highest in summer and lowest in winter and this was accompanied by a high turnover of species in time, resulting in pronounced seasonal differences in species composition. Most foraging was nocturnal during summer but was almost exclusively diurnal during winter, and individual species displayed distinctive patterns of diet foraging activity. Although the overall temporal distribution of the communities were apparently controlled by temperature, interspecific competition may also be an important factor influencing the seasonal and diel distributions of individual species, resulting in their high degree of temporal separation. The overall consequence is that although the study area contains many abundant species with similar ecological requirements, few of these are active in the same place at the same time.  相似文献   

2.
Moonlight is known to affect the nocturnal behaviour and activity rhythms of many organisms. For instance, predators active at night may take advantage from increased visibility afforded by the moon, while prey might regulate their activity patterns to become less detectable. Many species of pelagic seabirds attend their colony only at night, in complete darkness, avoiding approaching their nest sites under moonlight. This behaviour has been most often interpreted as an antipredator adaptation (‘predation avoidance’ hypothesis). However, it may also reflect a lower foraging efficiency during moonlit nights (‘foraging efficiency’ hypothesis). Indeed, moonlight may reduce prey availability because preferred seabird prey is known to occur at higher depths in moonlit nights. Using high‐accuracy behavioural information from data loggers, we investigated the effect of moonlight on colony attendance and at‐sea nocturnal foraging in breeding Scopoli's shearwaters Calonectris diomedea. We found that birds departing for self‐feeding trips around the full moon performed longer trips than those departing around the new moon. On nights when the moon was present only partly, nest burrow entrances took place largely in the moonless portion of the night. Moreover, contrary to predictions from the ‘foraging efficiency’ hypothesis, nocturnal foraging activity increased according to moonlight intensity, suggesting that birds increased their foraging activity when prey became more detectable. This study strengthens the idea that colony attendance behaviour is strictly controlled by moonlight in shearwaters, which is possibly related to the perception of a predation risk.  相似文献   

3.
Evolutionary transitions to dim-light foraging (predawn matinal, crepuscular, nocturnal) have occurred repeatedly in bees, and may be associated with an escape from enemies or competitors. To date, however, little information has been available to test these hypotheses. Here we provide the first detailed information on the nesting behaviour of two species of Neotropical, nocturnal sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae). Females are facultatively social or solitary, and construct nests in dead wood. Nocturnal foraging behaviour is bimodal. Bees began foraging after sunset (∼18:30 h) and ceased foraging approximately 1 h later even though nocturnal flowers with pollen were still abundant; a second foraging bout occurred in the predawn morning, which began at ∼04:45 h and ended around sunrise (∼06:15 h) when diurnal-blooming flowers were abundant. Bees are capable of controlled flight in full light. They utilized pollen from both canopy and understory plant species, which have diurnal or nocturnal pollen anthesis. Megalopta nests are attacked by generalist predators such as ants, as well as the endoparasitic fly Melaloncha sp. nov. (Phoridae), the beetle Macrosaigon gracilis (Rhipophoridae), the parasitic wasp Lophostigma cincta (Mutillidae), and the brood parasite Megalopta byroni (Halictidae). Overall nest survivorship rates were comparable to those for diurnal relatives, but rates of cell parasitism for Megalopta (< < 5%) were substantially lower than they are for day-flying relatives, offering some support for the hypothesis that the evolution of nocturnal behaviour enables escape from natural enemies.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 377–387.  相似文献   

4.
1. The thermal adaptation hypothesis proposes that because thermoregulation involves a high metabolic cost, thermal limits of organisms must be locally adapted to temperatures experienced in their environments. There is evidence that tolerance to high temperatures decreases in insects inhabiting colder habitats and microclimates. However, it is not clear if thermal limits of ectotherms with contrasting temporal regimes, such as diurnal and nocturnal insects, are also adapted to temperatures associated with their circadian activities. 2. This study explores differences in heat tolerance among diurnal and nocturnal ant species in four ecosystems in Mexico: tropical montane, tropical rainforest, subtropical dry forests, and high‐elevation semi‐desert. 3. The critical thermal maximum (CTmax), i.e. the temperature at which ants lost motor control, was estimated for diurnal and nocturnal species. CTmax for 19 diurnal and 12 nocturnal ant species distributed among 45 populations was also estimated. 4. Semi‐desert and subtropical dry forest ants displayed higher tolerances to high temperatures than did ants in tropical rainforest. The lowest tolerance to high temperatures was recorded in tropical montane forest ants. In general, among all habitats, the CTmax of nocturnal ants was lower than that of diurnal ants. 5. An increase in nocturnal temperatures, combined with lower tolerance to high temperatures, may represent a substantial challenge for nocturnal ectotherms in a warming world.  相似文献   

5.
We studied stress hormones and foraging of nocturnal Acomys cahirinus and diurnal A. russatus in field populations as well as in two field enclosures populated by both species and two field enclosures with individuals of A. russatus alone. When alone, A. russatus individuals become also nocturnally active. We asked whether nocturnally active A. russatus will respond to moon phase and whether this response will be obtained also in diurnally active individuals. We studied giving-up densities (GUDs) in artificial foraging patches and fecal cortisol metabolite levels. Both species exhibited elevated fecal cortisol metabolite levels and foraged to higher GUDs in full moon nights; thus A. russatus retains physiological response and behavioral patterns that correlate with full moon conditions, as can be expected in nocturnal rodents, in spite of its diurnal activity. The endocrinological and behavioral response of this diurnal species to moon phase reflects its evolutionary heritage.  相似文献   

6.
Females of the parasitic phorid Neodohrniphora sp. were collected in the field and released singly inside an observation chamber placed between a laboratory colony of Atta sexdens (L.) and its foraging arena. The number and speed of loaded and unloaded ants returning to the nest, the weight of foragers and their loads, the number of leaf fragments abandoned by ants, and the number of small workers 'hitchhiking' on leaf fragments were measured before phorids were released, while they were in the observation chamber, and after they were removed. Relatively few ants were attacked by Neodohrniphora sp., but the presence of flies prompted outbound ants to return to the nest and caused a significant reduction on the number and mass of foragers. Additionally, the weight of leaf fragments transported by ants was reduced and the number of abandoned fragments increased in response to Neodohrniphora sp. Presence of the parasitoid caused no significant changes in the number of hitchhiking ants. The regular ants' traffic was resumed after phorids were removed, but foraging activity remained below normal for up to three hours. In the field A. sexdens forages mostly at night, but colonies undergo periods of diurnal foraging during which ants are subject to parasitism from several species of phorid flies. Considering that daytime foraging may be necessary for nutritional or metabolical needs, phorids may have a significant impact on their hosts by altering their foraging behavior regardless of the numerical values of parasitism.  相似文献   

7.
Abstract. 1. The leaf-cutting ant Atta cephalotes (L.) in a Costa Rican tropical moist forest showed diel changes in foraging activity. In most colonies studied, foraging was primarily nocturnal, although in a few colonies it was primarily diurnal.
2. In all colonies studied, mean forager mass was larger at night than during the day.
3. At night, most foragers carried freshly cut leaf fragments, whereas during the day a large proportion carried dried fragments and other vegetable matter collected from along their trail.
4. Along one trail, where foraging was primarily nocturnal, the match between ant mass and load mass was compared for laden ants at night and during the day. Laden ants at night were larger, carried relatively heavier loads, and showed a higher degree of matching between their mass and load mass than those foraging during the day.
5. A comparison of load masses of ants coming down a local tree and of ants picking up marked fragments from along their trail suggested that the diel difference in load mass and in the match between ant mass and load mass were related to the greater proportion of ants carrying freshly cut leaf fragments at night. Fresh fragments weighed more due to higher water content, and the match between ant mass and load mass was greater for ants cutting fresh fragments than for ants picking up abandoned fragments from along their trail.
6. Possible explanations for the diel changes in forager size and activity are discussed.  相似文献   

8.
Diel activity of resident and immigrant waterbirds at Lake Turkana, Kenya   总被引:1,自引:0,他引:1  
M. FASOLA  L. CANOVA 《Ibis》1993,135(4):442-450
Of the 42 dominant species of waterbirds at Lake Turkana, Kenya, 14 foraged uniformly throughout the day and night, five foraged mostly during the night, five foraged during both the night and day but with diurnal peaks, 17 were exclusively diurnal and only one was exclusively nocturnal. Species with uniform feeding activity usually captured small prey, using tactile or visual plus tactile cues; most diurnal species captured large prey, using visual cues. However, some species which fed mostly at night, or uniformly, relied exclusively on visual cues. We found support from only one species that moonlight influenced foraging activities. Palaearctic immigrants spent significantly more time foraging than partial migrants and residents; they were also smaller and mainly microphagous. Only gulls and terns were restricted to diurnal feeding, presumably by their need to see and capture prey while flying. The other groups were formed by species which foraged uniformly over 24 h or partially by day or night. These patterns indicate that in most waterbirds feeding activities are not basically tied to any phase of the diel cycle. Since most waterbirds display some degree of nocturnal activity, time budget studies based only on diurnal observations are likely to be misleading.  相似文献   

9.
Seed predation by birds and small mammals in semiarid Chile   总被引:2,自引:0,他引:2  
We studied spatial and temporal patterns in foraging activity among diurnal birds and nocturnal mammals at a semiarid site in northern Chile using artificial foraging trays. Small mammals foraged more extensively under shrubs than in open microhabitats, but birds showed no such selection. Moreover, avian foraging was more extensive than that by small mammals in all seasons and both microhabitats. Avian foraging was highly seasonal, as many birds at our site migrate to the Andean prepuna or to Patagonia during the austral summer. Birds have tended to be overshadowed by small mammals and ants in studies of granivory, but this study suggests that their importance may be underestimated in some systems.  相似文献   

10.
Division of labour in Solenopsis invicta follows a familiar pattern: younger, smaller ants tend toward brood care while older, larger ants tend toward foraging. However, long-term observations of marked individuals reveal that length of nursing and foraging ‘careers’ and the age of transition between these activities vary considerably between and within size groups, and are related to length of life. Experiments with entire colonies show that larger ants are more likely than smaller ants to forage for insect prey. There are two main worker castes, ‘nurses’ and ‘foragers’, whose members span a wide age-size range, and a large ‘reserve’ subcaste, heterogeneous in age, size, and behaviour: reserves may nurse, forage, store liquid food, or relay food from nurses to foragers. The proportion of ants engaged in foraging decreases with colony size because many ants in large colonies are not exposed to recruitment signals.  相似文献   

11.
Most mammals can be characterized as nocturnal or diurnal. However infrequently, species may overcome evolutionary constraints and alter their activity patterns. We modeled the fundamental temporal niche of a diurnal desert rodent, the golden spiny mouse, Acomys russatus. This species can shift into nocturnal activity in the absence of its congener, the common spiny mouse, Acomys cahirinus, suggesting that it was competitively driven into diurnality and that this shift in a small desert rodent may involve physiological costs. Therefore, we compared metabolic costs of diurnal versus nocturnal activity using a biophysical model to evaluate the preferred temporal niche of this species. The model predicted that energy expenditure during foraging is almost always lower during the day except during midday in summer at the less sheltered microhabitat. We also found that a shift in summer to foraging in less sheltered microhabitats in response to predation pressure and food availability involves a significant physiological cost moderated by midday reduction in activity. Thus, adaptation to diurnality may reflect the "ghost of competition past"; climate-driven diurnality is an alternative but less likely hypothesis. While climate is considered to play a major role in the physiology and evolution of mammals, this is the first study to model its potential to affect the evolution of activity patterns of mammals.  相似文献   

12.
The nocturnality hypothesis of K. Autumn and coworkers states that nocturnal geckos have evolved a low energetic cost of locomotion (C(min)). A low C(min) increases maximum aerobic speed and partially offsets the decrease in maximum oxygen consumption caused by activity at low nocturnal temperatures. We tested whether a low C(min) is unique to nocturnal geckos or represents a more general pattern of convergent evolution among lizards that enables nocturnality and/or cold-temperature activity. We measured C(min) in four carefully selected lizard species from New Zealand (two nocturnal and two diurnal; n=5-9 individuals per species), including a nocturnal and diurnal gecko (a low C(min) is a gecko trait and is not related to nocturnality), a nocturnal skink (a low C(min) is related to being nocturnal), and a diurnal skink active at low temperatures (a low C(min) is related to being active at low body temperatures). The C(min) values of the four species measured in this study (range=0.21-2.00 mL O(2) g(-1) km(-1)) are lower than those of diurnal lizards from elsewhere, and the values are within or below the 95% confidence limits previously published for nocturnal geckos. A low C(min) increases the range of locomotor speeds possible at low temperatures and provides an advantage for lizards active at these temperatures. We accepted the hypothesis that nocturnal lizards in general have a low C(min) and provide evidence for a low C(min) in lizards from cool-temperate environments. The low C(min) in lizards living at high latitudes may enable extension of their latitudinal range into otherwise thermally suboptimal habitats.  相似文献   

13.
14.
Light intensity is an important environmental factor affecting the structure of fish assemblages during the day-night cycle. Light influences how organisms perceive their environment, modulating their intraspecific and interspecific relationships. The relationship between light intensity variations and biological cycles should be observed at the level of organismal morphology. In this study the relationship between activity rhythms, thus light intensity experienced by fish in the period of major activity and external morphology, have been investigated. The morphological traits of 97 selected fish species were compared in order to determine the existence of a common morphological plan in agreement with their diurnal or nocturnal activity rhythm. Species sorting was performed by maximizing the diversity of activity rhythm, habitat choice, ecology, and trophic habits within the same family, to assess the importance of the day-night cycle on species morphology in relation to other environmental features. The morphological characters selected for the geometric morphometric analysis were body profile and the position of mouth, eye, pelvic, pectoral, dorsal, and caudal fin. The present analysis allowed different consensus forms for nocturnal and for diurnal species to be identified. Two-block Partial Least Squares analysis was then performed for the purpose of modeling the covariation between the form and two important external variables (ecology and activity).  相似文献   

15.
Insects are a nutritious food source for many primates. In chimpanzees, insectivory is most prevalent among communities that manufacture tools to harvest social insects, particularly ants and termites. In contrast to other long-term study sites, chimpanzees (Pan troglodytes schweinfurthii) in Budongo Forest and Kibale National Park, Uganda, rarely eat insects and have small foraging tool kits, supporting speculation that infrequent insectivory—technically aided or otherwise—characterises chimpanzees in this part of Uganda’s Rift Valley. To expand the dataset for this region, insect foraging was investigated at Bulindi (25 km from Budongo) over 19 months during two studies in 2007–2008 and 2012–2013. Systematic faecal analysis demonstrated that insectivory is a habitual foraging activity at this site. Overall levels of insect consumption varied considerably across months but were not predicted by monthly changes in rainfall or fruit intake. Unlike their Budongo and Kibale counterparts, Bulindi chimpanzees often consume ants (principally weaver ants, Oecophylla longinoda) and use sticks to dig out stingless bee (Meliponini) ground nests. In other respects, however, insectivory at Bulindi conforms to the pattern observed elsewhere in this region: they do not manufacture ‘fishing’ or ‘dipping’ tools to harvest termites and aggressive or hard-to-access ants (e.g., army ants, Dorylus spp.), despite availability of suitable prey. The Bulindi data lend support to the supposition that chimpanzees in this part of the Rift Valley rarely exploit termites and Dorylus ants, apparently lacking the ‘cultural knowledge’ that would enable them to do so most efficiently (i.e., tool use). The study’s findings contribute to current debates about the relative influence of genetics, environment and culture in shaping regional and local variability in Pan foraging ecology.  相似文献   

16.
《Chronobiology international》2013,30(8):1564-1579
Daily rhythms in different biochemical and hematological variables have been widely described in either diurnal or nocturnal species, but so far no studies in the rhythms of these variables have been conducted in a dual-phasing species such as the degus. The Octodon degus is a rodent that has the ability to switch from diurnal to nocturnal activity under laboratory conditions in response to wheel-running availability. This species may help us discover whether a complete temporal order inversion occurs parallel to the inversion that has been observed in this rodent's activity pattern. The aim of the present study is to determine the phase relationships among 26 variables, including behavioral, physiological, biochemical, and hematological variables, during the day and at night, in diurnal and nocturnal degus chronotypes induced under controlled laboratory conditions through the availability of wheel running. A total of 39 male degus were individually housed under a 12:12 light-dark (LD) cycle, with free wheel-running access. Wheel-running activity (WRA) and body temperature (Tb) rhythms were recorded throughout the experiment. Melatonin, hematological, and biochemical variables were determined by means of blood samples obtained every 6?h (ZT1, ZT7, ZT13, and ZT19). In spite of great differences in WRA and Tb rhythms between nocturnal and diurnal degus, no such differences were observed in the temporal patterns of most of the biological variables analyzed for the two chronotypes. Variation was only found in plasma urea level and lymphocyte number. A slight delay in the phase of the melatonin rhythm was also observed. This study shows the internal temporal order of a dual-phasing mammal does not show a complete inversion in accordance with its activity and body temperature pattern; it would appear that the switching mechanism involved in the degu's nocturnalism is located downstream from the pacemaker. (Author correspondence: ).  相似文献   

17.
Mammalian species can be defined as diurnal or nocturnal, depending on the temporal niche during which they are active. Even if general activity occurs during nighttime in nocturnal rodents, there is a patchwork of general activity patterns in diurnal rodents, including frequent bimodality (so-called crepuscular pattern, i.e., dawn and dusk peaks of activity) and a switch to a nocturnal pattern under certain circumstances. This raises the question of whether crepuscular species have a bimodal or diurnal - as opposed to nocturnal - physiology. To this end, we investigated several daily behavioral, hormonal and neurochemical rhythms in the diurnal Sudanian grass rat (Arvicanthis ansorgei) and the nocturnal Long-Evans rat (Rattus norvegicus). Daily rhythms of general activity, wheel-running activity and body temperature, with or without blocked wheel, were diurnal and bimodal for A. ansorgei, and nocturnal and unimodal for Long-Evans rats. Moreover, A. ansorgei and Long-Evans rats exposed to light-dark cycles were respectively more and less active, compared to conditions of constant darkness. In contrast to other diurnal rodents, wheel availability in A. ansorgei did not switch their general activity pattern. Daily, unimodal rhythm of plasma leptin was in phase-opposition between the two rodent species. In the hippocampus, a daily, unimodal rhythm of serotonin in A. ansorgei occurred 7 h earlier than that in Long-Evans rats, whereas a daily, unimodal rhythm of dopamine was unexpectedly concomitant in both species. Multiparameter analysis demonstrates that in spite of bimodal rhythms linked with locomotor activity, A. ansorgei have a diurnally oriented physiology.  相似文献   

18.
The division of animals into those that are diurnal (day-active) and those that are nocturnal (night-active) is widely recognized. However, closer examination of the selection of temporal niches by mammalian species reveals the existence of a gradient of diurnality between and within species, wherein “diurnal” and “nocturnal” are merely the opposite ends of a continuum. Evidence against a simple diurnal - nocturnal dichotomy includes the existence of species without any preference for time of day, species with a crepuscular pattern of activity, species containing both diurnal and nocturnal individuals, species containing individuals that spontaneously shift from a nocturnal to a diurnal activity pattern, species showing degrees of diurnality greater or smaller than those of other species, organismal variables exhibiting degrees of diurnality greater or smaller than those of other variables, and species having different temporal patterns under the effects of different environmental variables. Research on the neural processes responsible for temporal niche selection has revealed no fundamental difference between the circadian clocks of diurnal and nocturnal animals, but recent findings suggest that different output pathways from the clock in a given species may operate with different circadian phases, thus providing an explanation for why different body functions in the same individual are subjected to different temporal niche selections.  相似文献   

19.
Plants bearing extrafloral nectaries (EFNs) vary the secretion of nectar between day and night, which creates turnover in the composition of interacting ant species. Daily variation in the composition of ant species foraging on vegetation is commonly observed, but its mechanisms are poorly understood. We evaluated the daily variation in nectar availability and interspecific aggressiveness between ants as possible regulatory mechanisms of the turnover in ant–plant interactions. We hypothesized that (i) plants would interact with more ant species during periods of higher secretion of nectar and that (ii) aggressive ant species would compete for nectar, creating a daily turnover of species collecting nectar. We tested this hypothesis by measuring the production of nectar during the day and night and by experimentally removing EFNs of Bionia coriacea (=Camptosema coriaceum) (Nees & Mart.) Benth. (Fabaceae: Faboideae) plants in a Brazilian savanna (Cerrado). We then compared the abundance and composition of ant species between those treatments and during the day. Our results indicate that more ant workers forage on plants during the day, when nectar was sugary, while more ant species forage at night, when aggressiveness between ant species was lower. We also detected a day/night turnover in ant species composition. Ant species foraging for nectar during the day were not the same at night, and this turnover did not occur on plants without EFNs. Both dominant ant species, diurnal Camponotus crassus (Hymenoptera: Formicidae) and nocturnal Camponotus rufipes (Hymenoptera: Formicidae), were the most aggressive species, attacking other ants in their specific periods of forage while also being very aggressive toward each other. However, this aggressiveness did not occur in the absence of nectar, which allowed non‐aggressive nocturnal ant species to forage only during the daytime, disrupting the turnover. We conclude that extrafloral‐nectar presence and interspecific aggressiveness between ants, along with other environmental factors, are important mechanisms creating turnovers in ants foraging on plants.  相似文献   

20.
1. Most animals are active by day or by night, but not both; juvenile salmonids are unusual in that they switch from being predominantly diurnal for most of the year to being nocturnal in winter. They are visual foragers, and adaptations for high visual acuity at daytime light intensities are generally incompatible with sensitive night vision. Here we test whether juvenile Atlantic Salmon Salmo salar are able to maintain their efficiency of prey capture when switching between diurnal and nocturnal foraging.
2. By testing the ability of the fish to acquire drifting food items under a range of manipulated light intensities, we show that the foraging efficiency of juvenile salmon is high at light intensities down to those equivalent to dawn or dusk, but drops markedly at lower levels of illumination: even under the best night condition (full moon and clear sky), the feeding efficiency is only 35% of their diurnal efficiency, and fish will usually be feeding at less than 10% (whenever the moon is not full, skies are overcast or when in the shade of bankside trees). Fish were unable to feed on drifting prey when in complete darkness.
3. The ability of juvenile salmon to detect prey under different light intensities is similar to that of other planktivorous or drift-feeding species of fish; they thus appear to have no special adaptations for nocturnal foraging.
4. While winter drift abundance is slightly higher by night than by day, the difference is not enough to compensate for the loss in foraging efficiency. We suggest that juvenile salmon can nonetheless switch to nocturnal foraging in winter because their food requirements are low, many individuals adopting a strategy in which intake is suppressed to the minimum that ensures survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号