首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D E Robertson  P A Kroon  C Ho 《Biochemistry》1977,16(7):1443-1451
The histidine-binding protein J of Salmonella typhimurium binds L-histidine as a first step in the high-affinity active transport of this amino acid across the cytoplasmic membrane. High-resolution nuclear magnetic resonance spectroscopy has been used to monitor the conformation of histidine-binding protein J in the presence and absence of substrate. Evidence is presented to show that this binding protein undergoes a conformational change involving a substantial number of amino-acid residues (including tryptophans) in the presence of L-histidine and that this change is specific for L-histidine. In order to monitor the involvement of tryptophan residues in the substrate-induced conformational change, 5-fluorotryptophan has been incorporated biosynthetically into the histidine-binding protein J using a tryptophan autotroph of Salmonella typhimurium. There are no significant differences in the conformation and binding activity between the 5-fluorotryptophan-labeled and the normal histidine-binding protein J. Proton and fluorine-19 nuclear magnetic resonance studies of the 5-fluorotryptophan-labeled binding protein show that at least one (and possibly two) of the tryptophan residues undergo(es) a change toward a more hydrophobic environment in the presence of L-histidine. These observations are supported by fluorescence data and by differences in the reactivity of the tryptophan residues of this protein toward N-bromosuccinimide in the presence and absence of substrate. The present results are consistent with models for the action of periplasmic-binding proteins in shock-sensitive transport systems of gram-negative bacteria which require a substrate-induced conformational change prior to the energy-dependent translocation of substrates.  相似文献   

2.
Histidine-binding protein J of Salmonella typhimurium has been chosen as a model system for a proton nuclear magnetic resonance spectroscopic investigation of binding protein-ligand interaction. This interaction is involved in the recognition step of the osmotic shock-sensitive active transport systems. When J protein binds L-histidine, four new, low-field, exchangeable proton resonances appear in the region +7 to +12 parts per million downfield from the water proton resonance (or +11.7 to +16.7 parts per million downfield from the methyl proton resonance of 2,2-dimethyl-2-silapentane-5-sulfonate). Due to their chemical shift range and other properties, they indicate the formation of both intra- and intermolecular hydrogen bonds. Experiments with 15N-labeled compounds confirm this conclusion. The specificity of the hydrogen-bond formation is demonstrated by observing the effects of substrate analogs, temperature, pH, and mutations on the exchangeable proton resonances. Proton-proton nuclear Overhauser effect measurements suggest that two of these exchangeable proton resonances (at +7.2 and +10.6 parts per million from H2O) are most likely from intramolecular hydrogen-bonded protons, while the other two (at +7.1 and +9.5 parts per million from H2O) are intermolecular hydrogen bonds. Our finding of L-histidine-induced hydrogen-bond formation in histidine-binding protein J in the solution state is an excellent demonstration of the production of specific conformational changes in a periplasmic binding protein upon binding of ligand.  相似文献   

3.
High-resolution 1 H-NMR spectroscopy at 600 MHz has been used to investigate the conformational transitions of the histidine-binding protein J of Salmonella Typhinmrium in solution as a function of pH and of l-histidine concentration. The dissociation constant for the binding of l-histidine to histidine-binding protein J increases from 6.0 × 10?8 to 5.1 × 10?7 M in going from pH 5.57 to 8.00. The conformation of this protein as observed by 1H-NMR also changes over this range of pH. However, when l-histidine is bound, the changes in conformation with pH are much smaller. Also, the pk for the single histidyl residue in histidine-binding protein J changes from 6.75 in the absence of l-histidine to 6.52 when l-histidine is bound. Earlier work in this laboratory resulted in the identification of several proton resonances believed to be at or near the l-histidine-binding site. Two of these resonances have been assigned to a tyrosine and the single histidyl residue in the histidine-binding protein J molecule.  相似文献   

4.
5.
R S Zukin  M F Klos    R E Hirsch 《Biophysical journal》1986,49(6):1229-1235
The Salmonella typhimurium periplasmic histidine-binding J-protein is one of four proteins encoded by the histidine transport operon. Mutant J-protein hisJ5625 binds L-histidine, but does not transport it. The tertiary structure and conformational dynamics of native and mutant J-protein have been compared using steady state fluorescence, fluorescence polarization, and fluorescence energy transfer measurements. The two proteins have different three-dimensional structures and exhibit different responses to histidine binding. Ligand-induced conformational changes were demonstrated in both J-proteins using fluorescence energy transfer (distant reporter method) between the single tryptophan residue per mole of protein and a fluorescein-labeled methionine residue. However, the conformational change of the mutant protein is qualitatively and quantitatively different from that of the wild-type protein. Moreover, the microenvironment of the tryptophan and its distance from the labeled methionine (44A for the wild type, 60A for the mutant J-protein) are different in the two proteins. In conclusion, these results indicate that the specific conformational change induced in the wild type J-protein is a necessary requirement for the transport of L-histidine.  相似文献   

6.
The introduction of deuterated and partially deuterated protein samples has greatly facilitated the 13C assignment of larger proteins. Here we present a new version of the HC(CO)NH-TOCSY experiment, the ed-H(CCO)NH-TOCSY experiment for partially deuterated samples, introducing a multi-quantum proton evolution period. This approach removes the main relaxation source (the dipolar coupling to the directly bound 13C spin) and leads to a significant reduction of the proton and carbon relaxation rates. Thus, the indirect proton dimension can be acquired with high resolution, combined with a phase labeling of the proton resonances according to the C-C spin system topology. This editing scheme, independent of the CHn multiplicity, allows to distinguish between proton side-chain positions occurring within a narrow chemical shift range. Therefore this new experiment facilitates the assignment of the proton chemical shifts of partially deuterated samples even of high molecular weights, as demonstrated on a 31 kDa protein.  相似文献   

7.
D Noel  K Nikaido  G F Ames 《Biochemistry》1979,18(19):4159-4165
Mutation hisJ5625 has altered the histidine-binding protein J of Salmonella typhimurium such that histidine transport is impaired, even though binding of histidine by the J protein is unimpaired [Kustu, S.G., & Ames, G.F. (1974) J. Biol. Chem. 249, 6976--6983]. We have determined by protein analytical methods that the only effect of this mutation has been the substitution of a cysteine residue for an arginine at a site in the interior of the polypeptide chain. This arginine residue is therefore potentially essential for the transport function of the protein. The mutant protein migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis more slowly than the wild type protein, as if its molecular weight were greater by as much as 2000. Since this behavior is apparently due to a single amino acid replacement, a molecular weight difference even between two closely related proteins should not be inferred solely on the basis of sodium dodecyl sulfate gel electrophoresis.  相似文献   

8.
The mechanism of inhibition of protein--nucleic acid complex formation by polymeric aurintricarboxylic acid (ATA) was investigated by proton magnetic resonance spectroscopy. The approach was the synthesis of totally deuterated ATA, followed by a 100-MHz proton magnetic resonance study of its interaction with bovine pancreatic ribonuclease A (RNase), a model nucleic acid binding protein. The binding of ATA to RNase elicited chemical shift changes and line broadening in the C(2)--H resonances of histidyl residues 12 and 119, both of which are located in the active site, whereas that of histidyl residue 105, which resides on the exterior of the protein structure, is unaffected. (Histidyl residue 48 is not observed under our conditions except at high pH.) The epsilon-methylene protons of the lysyl side chains were also broadened upon the binding of ATA. Polymeric ATA displaces cytidine 2'-monophosphate and cytidine 3'-monophosphate from the active site of the enzyme as revealed by nuclear magnetic resonance spectroscopy. These observations suggest that the mechanism of action of ATA involves competition between the nucleic acid and the polymeric ATA for binding in the active site of the protein. Electron spin resonance spectroscopy reveals that polymeric ATA is a stable free radical, thus accounting for the major line broadening effect upon binding to protein. This finding may provide a powerful means of probing the nucleic acid binding site of proteins by proton magnetic resonance spectroscopy.  相似文献   

9.
Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters, transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiologi-cal assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.  相似文献   

10.
Effects of volatile anesthetic on channel structure of gramicidin A   总被引:1,自引:0,他引:1       下载免费PDF全文
Volatile anesthetic agent, 1-chloro-1,2,2-trifluorocyclobutane (F3), was found to alter gramicidin A channel function by enhancing Na(+) transport (. Biophys. J. 77:739-746). Whether this functional change is associated with structural alternation is evaluated by circular dichroism and nuclear magnetic resonance spectroscopy. The circular dichroism and nuclear magnetic resonance results indicate that at low millimolar concentrations, 1-chloro-1,2,2-trifluorocyclobutane causes minimal changes in gramicidin A channel structure in sodium dodecyl sulfate micelles. All hydrogen bonds between channel backbones are well maintained in the presence of 1-chloro-1,2,2-trifluorocyclobutane, and the channel structure is stable. The finding supports the notion that low affinity drugs such as volatile anesthetics and alcohols can cause significant changes in protein function without necessarily producing associated changes in protein structure. To understand the molecular mechanism of general anesthesia, it is important to recognize that in addition to structural changes, other protein properties, including dynamic characteristics of channel motions, may also be of functional significance.  相似文献   

11.
The transport of histidine in the gram negative bacterium S. typhimurium has been studied over a number of years and found to occur through five transport systems (Ames, 1972). Of these, the one with the highest affinity has been studied in detail from the genetic, physiological and biochemical point of view. This system, known as the high-affinity histidine permease, is composed of two subsystems, the J-P and K-P systems, which have a component in common, the P protein, presumed to be membrane-bound. The J-P system, moreover, is known to require the presence of a periplasmic histidine-binding protein, the J protein. The J protein is coded for by the hisJ gene and the P protein is coded for by the hisP gene. Both of these genes have been mapped at 75 min on the Salmonella chromosomal map. Adjacent to them is a regulatory gene, the dhuA gene. The periplasmic histidine-binding protein J has been shown to interact directly with the second component of transport, the P protein (Ames and Spudich, 1976). In accordance with this, histidine-binding protein J has been shown to contain, besides the histidine-binding site, a second site, essential for function, the interaction site (Kustu and Ames, 1974). We have recently shown that a mutant J protein with a defective interaction site but an intact histidine-binding site cannot function in histidine transport, unless an appropriate compensating mutation is introduced in the P protein. The interaction between the J and P proteins is an obligatory step in transport. The mutation in the interaction site of the J protein has been shown to map in the hisJ gene, and the compensating supressor mutation in the P protein has been shown to map in the hisP gene. Our contention that the J and P proteins engage in a functional interaction assumes further strength from other studies on protein-protein interaction in bacteriophage development and in ribosomal structure. Among the possible functions of the J-P interaction in histidine transport, a likely one is the transmission of information to the P protein, concerning whether or not the histidine-binding site on the J protein is occupied. Appropriate conformational changes then can occur in either the J or the P protein, or both, such that the histidine is released in the correct location and direction on the inside of the cell. This could occur either by a pore-formation mechanism or by binding-site translocation. Another alternative is that the P protein is part of an energy transducing mechanism in which energy is transmitted to the J protein, through the interaction site, as a prerequisite for the J protein participation in translocation. Among the interesting findings coming out of this work, is also the fact that the P protein performs a central function in transport being involved in the permeation of other substrates besides histidine. It is likely that other binding proteins besides the J protein require the P protein. Thus an interesting question which we are trying to answer at present is whether the P protein has separate interaction sites for each of these other binding proteins requiring its function, or whether they all interact at one common site.  相似文献   

12.
The substrate induced conformational change of glutamine binding protein isolated from E. coli has been studied by high resolution proton magnetic resonance spectroscopy. The addition of L-glutamine to a protein solution caused a marked change in the proton magnetic resonance spectrum. The chemical shifts of several resonances were considerably different for the free and complexed protein. The line width of the methyl protons decreased considerably with the addition of substrate indicating that the environment of a sizeable percentage of the methyl groups is different. The kinetics of binding as well as a possible mode of action of the binding proteins will be discussed.  相似文献   

13.
Proton nuclear magnetic resonance studies have revealed several structural and dynamic properties of the glutamine-binding protein of Escherichia coli. When this protein binds L-glutamine, six low-field, exchangeable proton resonances appear in the region from +5.5 to +10 parts per million downfield from water (or +10.2 to +14.7 parts per million downfield from the methyl proton resonance of 2,2-dimethyl-2-silapentane-5-sulfonate). This suggests that the binding of L-glutamine induces specific conformational changes in the protein molecule, involving the formation of intermolecular and intramolecular hydrogen bonds between the glutamine-binding protein and L-glutamine, and within the protein molecule. The oxygen atom of the gamma-carbonyl group of L-glutamine is likely to be involved in the formation of an intermolecular hydrogen bond between the ligand and the binding protein. We have shown that at least one phenylalanine and one methyl-containing residue are spatially close to this intermolecular hydrogen-bonded proton. The intermolecular and intramolecular hydrogen-bonded protons of the ligand-protein complex undergo solvent exchange. The local conformations around these intermolecular and intramolecular hydrogen bonds are quite stable when subjected to pH and temperature variations. From these results, the utility of proton nuclear magnetic resonance spectroscopy for investigating such binding proteins has been shown, and a picture of the ligand-binding process can be drawn.  相似文献   

14.
A technique for proton labelling of selected amino acids in deuterated calbindin D9K, heterologously expressed in E. coli, was developed in order to simplify and obtain higher resolution in 1H-NMR spectra. The spectra from two double-labelling experiments, Val plus Ser and Val plus Leu, when compared to the uniformly protonated protein showed a dramatically simpler pattern with low background signals and gave considerably sharper resonances due to reduced relaxation rates in the deuterated proteins. The selective proton labelling technique will enable detailed and rapid analysis of interesting domains of proteins and will also make the analysis of larger proteins feasible.  相似文献   

15.
Studies of proton-proton nuclear Overhauser effects were used to obtain individual assignments of 17 amide proton resonances in the 360 MHz proton nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor. First, optimizing the conditions for obtaining selective nuclear Overhauser effects in the presence of spin diffusion in macromolecules is discussed. Truncated driven nuclear Overhauser experiments were used to assing the amide proton resonances of the beta-sheet in the inhibitor. It is suggested that these techniques could serve quite generally to obtain individual resonance assignments in beta-sheet secondary structures of proteins. Combination of nuclear Overhauser studies with spin decoupling further resulted in individual assignments of the gamma-methyl resonances of the two isoleucines and numerous Calpha and Cbeta protons.  相似文献   

16.
Assignments are reported for a substantial number of heme and amino acid proton resonances in the 1H nuclear magnetic resonance spectrum of the carbon monoxide complex of isolated hemoglobin alpha-chains. These resonances provide information on the solution conformation of the protein, particularly in the vicinity of the heme. The heme pocket structure is generally similar to that of carbonmonoxymyoglobin; several conserved residues adopt virtually identical positions relative to the heme in the two proteins. The largest conformational differences involve residues surrounding the ligand-binding site, notably Val62 (E11) and His58 (E7). The chemical shifts of the proximal His87 (F8) resonances are very similar in spectra of the two proteins, indicating a highly conserved coordination geometry and similar hydrogen bonding to the backbone carbonyl of Leu83 (F4).  相似文献   

17.
Proton nuclear magnetic resonance (NMR) spectra of crotamine, a myotoxic protein from a Brazilian rattlesnake (Crotalus durissus terrificus), have been analyzed. All the aromatic proton resonances have been assigned to amino acid types, and those from Tyr-1, Phe-12, and Phe-25 to the individual residues. ThepH dependence of the chemical shifts of the aromatic proton resonances indicates that Tyr-1 and one of the two histidines (His-5 or His-10) are in close proximity. A conformational transition takes place at acidicpH, together with immobilization of Met-28 and His-5 or His-10. Two sets of proton resonances have been observed for He-17 and His-5 or His-10, which suggests the presence of two structural states for the crotamine molecule in solution.  相似文献   

18.
Two-dimensional proton nuclear magnetic resonance (n.m.r.) experiments were performed on the coat protein of cowpea chlorotic mottle virus (molecular mass: 20.2 kDa) present as dimer (pH 7.5) or as capsid consisting of 180 protein monomers (pH 5.0). The spectra of both dimers and capsids showed resonances originating from the flexible N-terminal region of the protein. The complete resonance assignment of a synthetic pentacosapeptide representing this N terminus made it possible to interpret the spectra in detail. The capsid spectrum showed backbone amide proton resonances arising from the first eight residues having a flexible random coil conformation, and side-chain resonances arising from the first 25 N-terminal amino acids. The dimer spectrum showed also side-chain resonances of residues 26 to 33, which are flexible in the dimer but immobilized in the capsid. The n.m.r. experiments indicated that the conformation of the first 25 amino acids of the protein in dimers and capsids is comparable to the conformation of the synthetic peptide, which alternates among extended and helical conformations on the n.m.r. time-scale. It is suggested that the alpha-helical region, situated in the region between residues 10 and 20, binds to the RNA during assembly of the virus particle.  相似文献   

19.
Reconstitution of liver fluke (Dicrocoelium dendriticum) apo-hemoglobin with hemins selectively deuterated at specific positions has permitted the assignment of several heme resonances in the proton nuclear magnetic resonance spectrum of the Met-aquo and Met-cyano forms of the holoprotein. It was established that in the Met-aquo form the meso protons resonate at positions characteristic of a six-co-ordinated in-plane iron. From this, we deduced that the Met-aquo species retains a bound water molecule at pH values as low as 4.5. The orientation of the proximal histidine imidazole ring with respect to the heme group in the cavity was determined through the identification of the heme methyl signals and the analysis of the hyperfine shift pattern in the Met-cyano hemoglobin proton nuclear magnetic resonance spectrum. Compared to sperm whale myoglobin, the heme appears to be rotated by 180 degrees about the alpha, gamma meso-axis. Protein isomers with the heme group in a reversed orientation were not detected, even shortly after reconstitution. In the Met-cyano form, the resonances most affected by the Bohr transition were shown to arise from the heme propionates.  相似文献   

20.
The 1H nuclear magnetic resonance spectrum of tuna ferrocytochrome c has been studied and the resonances of all 49 amino acid methyl groups have been assigned to specific absorption lines. In comparison with resonance assignments in the ferricytochrome c spectrum, the secondary shifts of resonances of ferrocytochrome c are smaller and the identification of characteristic spin-systems from comparison of spectra from homologous proteins more difficult. For this reason, two-dimensional nuclear magnetic resonance exchange correlated spectroscopy has been used to correlate the assigned resonances of tuna ferricytochrome c with previously unassigned resonances of tuna ferrocytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号