首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Using the larvae, pharate pupa, and pharate adults of the moth fly, Telmatoscopus albipunctatus, histological and ultrastructural features of the salivary glands were investigated. The gland lumen contains a milky secretion from the first instar. This secretion continues to ccur at all subsequent developmental stages; with the onset of the pharate pupal stage, however, the secretion becomes transparent and rather viscous. Histochemical tests revealed that it is mainly proteinaceous. Glands from the same developmental stage may respond differently to PAS-reaction.Various cell organelles were compared at consecutive stages of larval development and of secretory activity of the salivary glands. In first and second instar larvae autophagic vacuoles are virtually absent in the salivary gland cells. They were occasionally found in the third instar, when they appear to be engaged in the process of organelle turnover. Histolysis of the larval glands is initiated towards the close of the fourth instar when the number of autophagic vacuoles starts to increase. Simultaneously, the cytoplasm, previously full of ribosomes and endoplasmic reticulum, starts losing these structures. At the beginning of the pharate adult stage, the cytoplasm becomes practically devoid of all structures other than those engaged in autophagy.Polyteny of the chromosomes during ontogeny of the larval salivary glands is also discussed.  相似文献   

3.
The purposes of this study are to determine the molt cycle of the American crayfish, Procambarus clarkii, and to quantify the amounts of the molt-inhibiting hormone (Prc-MIH) in the hemolymph and neurohemal sinus glands during the molt cycle of the American crayfish. The molt cycle was classified into six stages based on the changes in volumes of gastroliths in the stomach and ecdysteroid titers in the hemolymph. A sandwich-type enzyme immunoassay using specific antibodies raised against N-terminal and C-terminal segments of Prc-MIH was developed for the Prc-MIH assay. It is sensitive to as little as 0.5 fmol of Prc-MIH (3.3 x10(-12) M). In the hemolymph, no Prc-MIH could be detected at any of the molt stages tested. However, in the sinus gland, it was demonstrated that the amount of Prc-MIH changes in a molt-stage-specific manner during the molt cycle. It was particularly noteworthy that the initiation of a molting sequence (i.e., entering the early premolt stage) corresponded to the increase in Prc-MIH content in the sinus gland, because the finding is consistent with the hypothesis that crustaceans enter the premolt stage when the MIH secretion from the sinus gland is reduced or ceases.  相似文献   

4.
5.
The freshwater prawn Macrobrachium rosenbergii shows three male morphotypes: blue-claw males (final stage having high mating activity), orange-claw males (transitional stage showing rapid somatic growth), and small males (primary stage showing sneak copulation). This morphotypic differentiation is considered to be controlled by androgenic gland hormone, which is probably a peptide hormone. However, its physiological roles are not fully understood. In the present study, we examined the correlation of androgenic gland cell structure to spermatogenic activity and morphotypic differentiation histologically in M. rosenbergii. spermatogenic activity showed close correlation to the molt cycle in orange-claw males and small males. spermatogonia increased in number in the late premolt stage, becoming spermatocytes in the postmolt stage, and spermatocytes differentiated into spermatozoa in the intermolt and early premolt stages. Ultrastructure of the androgenic gland was additionally compared among the molt stages, but, distinct histological changes were not observed in relation to spermatogenesis during the molt cycle. On the other hand, among the three morphotypes, the androgenic gland was largest in the blue-claw males, containing developed rough endoplasmic reticulum in the cytoplasm. These results suggest that, during spermatogenesis which is related to the molt cycle, the androgenic gland hormone is at rather constant levels and plays a role in maintaining spermatogenesis rather than directly regulating the onset of a specific spermatogenesis stage and that, during the morphotypic differentiation, the androgenic gland is most active in the blue-claw males and plays a role in regulating the observed high mating activity in M. rosenbergii.  相似文献   

6.
Silk glands of the mulberry silkworm Bombyx mori are long and paired structures originating from the labial region and are anatomically and physiologically divided into three major compartments, the anterior, middle and posterior silk glands. The silk gland morphogenesis is complete by 8 days post egg laying. Extensive growth of silk glands during the larval stages is due to increase in tissue mass and not cell number. The cells in a completely formed silk gland pursue an endoreplicative cell cycle, and the genome undergoes multiple rounds of replication without mitosis or nuclear division. The expression patterns of cyclin B (mitotic cyclin) and cyclin E (G1 cyclin, essential for G1/S transition in both mitotic and endoreplicative cell cycles) in the course of silk gland development revealed that mitotic cell divisions take place only in the apex of the growing silk gland. However, the persistence of another mitotic focus in the middle silk gland even when the growing apex has moved well past this zone suggested the continued operation of mitosis for a while in this restricted region. The lack of cyclin B expression and abundance of cyclin E in the rest of the areas confirmed an alternation of the G1 and S phases of the cell cycle without an intervening mitotic phase. No expression of cyclin B was noticed anywhere in the silk glands after stage 25 of embryogenesis, indicating a complete switch over to the endomitotic mode of the cell cycle. The onset of expression of various genes encoding different silk proteins correlated with the onset of endomitotic events.Edited by D. Tautz  相似文献   

7.
In the three salivary gland regions of Bradysia hygida (Diptera, Sciaridae) the patterns of polypeptide synthesis, as revealed by electrophoresis and fluorography, are very stable during the fourth larval instar until about 30 h before the pupal molt. At this age the patterns of polypeptide synthesis start to undergo marked changes. The striking correlations between these changes and the development of two distinct groups of DNA puffs support the proposal that DNA puffs are causally related to the synthesis of specific proteins in the salivary glands.  相似文献   

8.
The development of the cells in the posterior silk gland of the silkworm, Bombyx mori, during the fourth larval instar has been studied. In the early stages of this instar, the wet weight of the gland and the amounts of RNA, DNA, and protein per animal increase logarithmically until they reach a stationary state at about 72 hr. At around 96 hr of the fourth instar, the larvae enter the molting state, which lasts for about 24 hr until the fourth ecdysis. Towards the end of the molt stage, the growth of the silk gland is resumed. Electron microscopical observation shows that in the early intermolt stage the cytoplasm is filled with free ribosomes and with rough endoplasmic reticulum (ER), first of the lamellar type (0–6 hr) and then of the vesicular or tubular type. The Golgi apparatus also is well developed. At the beginning of the molt stage (90–96 hr), however, most of the ER becomes lamellar in type, concentric lamellar structures being occasionally observed, and the Golgi vacuoles disappear. Autophagosomes and lysosomes increase markedly and the apical portion of the cytoplasm becomes extensively vacuolated; this suggests that the secretory activities are completely depressed, and pronounced degenerative changes appear during the molt stage. Towards the end of the molt stage, large lamellar ER elements are fragmented into smaller lamellae and there is a pronounced increase in the number of free ribosomes.  相似文献   

9.
The spiny lobster Panulirus argus has a life cycle consisting of a long-term (~9-12 months) planktonic larval period with 11 larval stages (the phyllosoma), a short (<1 month?) planktonic-to-benthic transitional postlarval stage (the puerulus), and benthic juvenile and adult phases. The mouthparts and foregut during these stages were examined and described by means of scanning electron microscopy (SEM) in an investigation of the species' developmental morphology, diet, and ecology. The phyllosoma mouthparts close to the esophagus are the labrum, mandibles, paragnaths, and first maxillae. The second maxillae and first and second maxillipeds are increasingly distant from the esophagus as the larva develops. The pair of asymmetrical mandibles bear many teeth and spines, and the molar processes form what appears to be an intricate toothed shear. The mandibles remain similar throughout the phyllosoma stages. During the molt into the puerulus, the mouthparts are greatly changed, and the second maxilla and the three maxillipeds join the other mouthparts near the esophagus. However, the transformation appears incomplete, and many of the mouthparts are not fully formed until the molt to juvenile completes their development. The phyllosoma foregut lacks a gastric mill and has but one chamber. In addition, the first two stages lack a gland filter. During the molt to puerulus, the foregut is greatly changed and subsequently is similar to typical decapod foreguts in having an anterior cardiac and posterior pyloric chamber. Only rudimentary internal armature is present. Following the molt to juvenile, the foregut is quite similar to that of the adult, which exhibits a substantial gastric mill. The 11 phyllosoma stages were separated into two groups (group A = stages 1-5, group B = stages 6-11) on the basis of changes in both mouthpart and foregut morphology. The puerulus has never been observed to feed. Nothing was observed in our investigations that would prevent feeding, though both mouthpart and foregut development appeared incomplete. The mouthpart and foregut structures of larval, postlarval and juvenile P. argus differ widely, possibly reflecting the extreme modifications for different habitats found among these life phases.  相似文献   

10.
In Drosophila gibberosa the maximum secretory output of the salivary glands is in the prepupa rather than in the late third-instar larva. Using salivary chromosome maps provided here we have followed puff patterns from late second-instar larvae through the time of histolysis of the salivary glands 28–32 h after pupariation and find low puff activity correlated with low secretory activity throughout much of the third larval instar. Ecdysteroid-sensitive puffs were not observed at the second larval molt but do appear prior to pupariation initiating an intense cycle of gene activity. The second cycle of ecdysteroid-induced gene activity a day later, at the time of pupation, appears somewhat damped, especially for late puffs. Salivary chromosome maps provided here may also be used to identify homologous loci in fat body, Malpighian, and midgut chromosomes.  相似文献   

11.
The silk gland is an important organ in silkworm as it synthesizes silk proteins and is critical to spinning. The genomic DNA content of silk gland cells dramatically increases 200-400 thousand times for the larval life span through the process of endomitosis. Using in vitro culture, DNA synthesis was measured using BrdU labeling during the larval molt and intermolt periods. We found that the cell cycle of endomitosis was activated during the intermolt and was inhibited during the molt phase. The anterior silk gland, middle silk gland, and posterior silk gland cells asynchronously exit the endomitotic cycle after day 6 in 5th instar larvae, which correlated with the reduced expression of the cell cycle-related cdt1, pcna, cyclin E, cdk2 and cdk1 mRNAs in the wandering phase. Additional starvation had no effect on the initiation of silk gland DNA synthesis of the freshly ecdysed larvae.  相似文献   

12.
《Autophagy》2013,9(5):515-517
Larval salivary glands of bees provide a good model for the study of hormone-induced programmed cell death in Hymenoptera because they have a well-defined secretory cycle with a peak of secretory activity phase, prior to cocoon spinning, and a degenerative phase, after the cocoon spinning. Our findings demonstrate that there is a relationship between apoptosis and autophagy during physiological cell death in these larval salivary glands, that adds evidence to the hypothesis of overlap in the regulation pathways of both types of programmed cell death. Features of authophagy include cytoplasm vacuolation, acid phosphatase activity, presence of autophagic vacuoles and multi-lamellar structures, as well as a delay in the collapse of many nuclei. Features of apoptosis include bleb formation in the cytoplasm and nuclei, with release of parts of the cytoplasm into the lumen, chromatin compaction, and DNA and nucleolar fragmentation. We propose a model for programmed cell death in larval salivary glands of Apis mellifera where autophagy and apoptosis function cooperatively for a more efficient degeneration of the gland secretory cells.

Addendum to:

Programmed Cell Death in the Larval Salivary Glands of Apis mellifera (Hymenoptera, Apidae)

E.C.M. Silva-Zacarin, G.A. Tomaino, M.R. Brochetto-Braga, S.R. Taboga, R.L.M. Silva de Moraes

J Biosci 2007; 32:309-28  相似文献   

13.
The silk gland of silkworm produces silk proteins during larval development. Many studies have long focused on the silk gland of the fifth instar larvae, but few have investigated this gland at other larval stages. In the present study, the silk gland proteomes of the fourth instar and fourth molt are analyzed using liquid chromatography–tandem mass spectrometry. In total, 2654 proteins are identified from the silk gland. A high abundance of ribosomal proteins and RR‐motif chitin‐binding proteins is identified during day 2 of the fourth instar (IV‐2) larval developmental stage, and the expression of cuticular proteins analogous to peritrophin (CPAP)‐motif chitin‐binding proteins is higher during the fourth molt (IV‐M). In all, nine enzymes are found to be involved in the chitin regeneration pathway in the silk gland. Among them, two chitinase and two chitin deacetylases are identified as CPAP‐motif proteins. Furthermore, the expression of CPAP3‐G, the most abundant CPAP‐motif cuticular protein in the silk gland during the IV‐M stage, is investigated using western blot and immunofluorescence analyses; CPAP3‐G shows a reverse changing trend with chitin in the silk gland. The findings of this study suggest that CPAP‐motif chitin‐binding proteins are involved in the degradation of the chitin layer in the silk gland. The data have been deposited to the ProteomeXchange with identifier PXD008677.  相似文献   

14.
The paired Y-organs of crustaceans control the molting process. In males of C. antennarius, these glands are opalescent, lobulated, epithelioid structures embedded in brown fatty tissue. Cells in the periphery extend processes to the connective tissue capsule, an arrangement that suggests increased surface area for metabolic exchange. The processes contain mitochondria and are tipped distally with electron dense material. The cytoplasm, scarce relative to nuclear volume, contains vesicles, polymorphic mitochondria with tubular cristae, and numerous free ribosomes, but little in way of smooth or rough endoplasmic reticulum or Golgi complexes. Progressing from intermolt to the premolt stage, mitochondria, as well as vesicles, and electron-dense particles in peripheral processes increase somewhat in number. Also, heterochromatin masses concentrate adjacent to the nuclear envelope. Eyestalk removal, which induces premolt stages in some species, did not produce consistent change in Y-organ substructure in C. antennarius. Although evidence is accumulating that Y-organs secrete a steroid molting hormone during late intermolt-premolt, the substructure of the glands exhibits neither (a) striking changes with the molt cycle, nor (b) all the characteristics typical of vertebrate steroid hormone synthesizing glands. Nevertheless, the structural features, respectively, are consistent with biochemical evidence that Y-organs (a) rapidly take up and convert sterol precursor and secrete a product without its accumulation or change in total sterol pool size, and (b) apparently cannot synthesize the sterol precursor. Y-organ cytology closely resembles that of some vertebrate steroid hormone secreting glands in which this synthetic capacity is minimal.  相似文献   

15.
Under in vitro conditions the prothoracic gland nerve of the last larval instar of Periplaneta americana shows the same efferent nervous activity as under in situ conditions–ie, low activity at the 9th day and high activity at the 20th day of the molting interval. Isolation of the prothoracic ganglion from the subesophageal ganglion provokes an increase in this nerve activity, suggesting an inhibitory effect of the subesophageal ganglion on prothoracic gland nerve activity in vivo. Only in 20-day-old larvae does electrical stimulation of isolated prothoracic glands in vitro via the gland nerve result in a slightly increased release of ecdysteroids from the gland. This effect could not be influenced by different lengths of stimulation periods. Denervation of the prothoracic gland by transection of the gland nerve on the 13th day of the molting interval results in a complete abolition of the first peak of ecdysteroid production in the gland but has no influence on the occurrence and the amount of the main ecdysteroid peak just before the molt. The results suggest the participation of nervous activity in special periods of prothoracic gland regulation in the cockroach.  相似文献   

16.
Caste differentiation in termites depends on complex hormonal changes during postembryonic development. Juvenile hormone (JH) is a central player in this process. The present study examined histological changes in the main hormone-producing endocrine glands, the corpora allata and molt glands, in the Japanese dampwood termite Hodotermopsis sjostedti. We focused on the soldier caste differentiation pathway, which can be induced artificially using an analogue of JH. The corpora allata exhibited volumetric changes during soldier induction, reflecting variations in the quantity of cytoplasm. Corpora allata from alates and neotenics clearly showed differentiation accompanied by cell proliferation, preparing for the high-level JH production necessary for reproduction. However, the volume increase of corpora allata was not always correlated to high JH titers. In contrast, molt glands degenerated in the reproductive castes. The JH analogue induced hypertrophy of the molt glands, along with the formation of lacunae, possibly related to ecdysteroid production. The JH analogue effect, inducing soldier differentiation, was suggested to require both mimic of high JH titers and stimulation of the molt glands. Received 12 November 2007; revised 2 June 2008; accepted 14 July 2008.  相似文献   

17.
Summary The corpora allata of the three last larval instars were studied in newly molted animals, at the beginning, middle, and end of the feeding period, and during the molt period. They were found to consist of uniform gland cells, whose ultrastructure changes in the course of the instars.In gland cells considered to be resting, the outer and inner nuclear membranes run in parallel without forming a dilated perinuclear space. Mitochondria are small, polymorphic, with an electron-dense matrix. The smooth endoplasmic reticulum (SER) appears as stacks of parallel cisternae near the nuclear envelope and in the rest of the cytoplasm, and as accumulations of twisted profiles. Occasionally, the SER takes the form of paracrystalline bodies. There are few small smooth-surfaced vesicles in the cytoplasm.In cells considered as active, a dilated perinuclear space occurs. The peripheral ends of profiles forming the SER are swollen, and numerous vesicles and vacuoles bud off from them to fill the cytoplasm. Mitochondria are large, with a more transparent matrix. The plasma membrane of gland cells located just beneath the connective tissue sheath forms numerous small invaginations.The corpora allata consist of resting cells during the molt periods. At the beginning of each instar, few active gland cells appear. In the middle of the second to last and the third to last instars, the bulk of the gland cells is active. At the end of these instars, there are both active and inactive cells. In the middle of the last instar, the gland cells are inactive or subactive, and at its end, all gland cells are completely inactive.  相似文献   

18.
Summary The prothoracic glands, source of the molting hormone ecdysone, regress within a few days after the final molt, a process which was analyzed with electron microscopic methods in the cockroaches Leucophaea and Blaberus. This strictly timed event is accompanied by drastic alterations in cellular fine structure. Early signs of breakdown appear in groups of nuclei whose substance becomes segregated into patches of contrasting electron density characteristic of pyknosis.The most conspicuous change in the cytoplasm of parenchymal cells concerns the appearance of large, heterogeneous inclusion bodies in which various cellular elements become segregated. These compartments seem to represent autophagic vacuoles within which the gradual degradation of much of their contents takes place, presumably under the influence of lysosomal enzymes. Undigested swirls of membranous character may remain sequestered within these packets for some time.At advanced stages of cellular atrophy, plasma membranes and nuclear envelopes have gradually disappeared, and masses of protoplasm undergoing autolysis become invaded by a greater number of hemocytes than are present in nymphal glands. These phagocytic elements appear to engulf debris of parenchymal cells as well as some degenerating connective tissue elements. After the completion of the regressive process, the axial band of musculature characteristic of the nymphal gland persists on its own. Whether or not some parenchymal cells (or possibly their precursors) capable of reactivation persist in the proximity of this muscle is unknown.The resorption of the prothoracic gland in the newly emerged insect is the result of physiological autolysis and seems to be aided by the activity of phagocytic hemocytes.Dedicated to Professor W. Bargmann on his 60th birthday in friendship and admiration.This study was supported by Research Grants AM-03984, NB-02145 and NB-05219 from the U.S.P.H.S.I wish to express my thanks to Mrs. S. Wurzelmann, Mrs. C. Jones, Mrs. C. Grubman, and Mr. S. Brown for their excellent technical assistance.  相似文献   

19.
In recessive trimolter (rt) mutants of the silkworm, Bombyx mori, that have four larval instars rather than five larval instars of normal B. mori, a decrease after a small increase in the hemolymph ecdysteroid titer during the early stages of the last (fourth) larval instar appeared to be a prerequisite for larvae to undergo precocious metamorphosis. The present study was carried out to investigate the possible mechanism underlying this decrease in the ecdysteroid titer. It was found that juvenile hormone (JH) biosynthetic activity of the corpora allata (CA) increased during the first day of the last larval instar, but its absolute JH biosynthesis activity was relatively lower compared to that of normal fourth-instar larvae in tetramolters. This lowered JH biosynthetic activity appeared to be related to a decrease in prothoracic gland ecdysteroidogenesis during the second day of the last instar, because hydroprene application prevented this decrease in prothoracic gland ecdysteroidogenesis, leading to the induction of a supernumerary larval molt. The in vitro incubation of prothoracic glands with hydroprene showed that hydroprene did not directly exert its action on prothoracicotropic hormone (PTTH) release. Further study showed that the application of hydroprene enhanced the competency of the glands to respond to PTTH. From these results, it was supposed that the lowered JH biosynthesis of the CA during the first day of last instar in rt mutants was related to decreased ecdysteroidogenesis in the prothoracic glands during the second day, thus playing a role in leading to precocious metamorphosis.  相似文献   

20.
Abstract Gross anatomy, ultrastructure, innervation and ultrastructural alterations of the prothoracic gland (PTG) of cotton bollworm, Helicover pa armigera (Lepidoptera: Noctuidae) are illustrated for the last larval and early pupal stages as observed by light and electron microscopy. The T-shaped, paired (PTGs) consist each of 76–116 cells which are classified morphologically as large and small gland cells. In addition, another kind of small (about 6μ in diameter) gland cell was found in the PTGs of last instar larvae. The PTGs are innervated by the branches of 3 nerves! and tracheae and tracheoles are abundantly distributed to these glands. PTGs disappeared completely by the third day after ecdysis to the pupal stage (at temperature 28 C with a photoperiod L15:D9). An intercellular channel system (ICS) is formed by numerous, deep invaginations of the plasma membrane of gland cells. This ICS gradually increases in depth and width and reaches maximum development around the time of the major ecdysteroid secretion peak during the last larval instar. Numerous multivesicular sacs (MVS) with their remnants and an extensive rough endoplasmic reticulum were observed within ICS and cytoplasm, respectively, on the fourth day of the last larval instar. At that time the matrix of mitochondria became much more electron lucent. Freeze-fracture replicas of the glandular epithelium were made from last instar (4th day larvae. Dynamics of structure are related to data from others concerning secretory states of the prothoracic glands of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号