首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat soleus muscles were ectopically innervated by implanting a foreign nerve in an endplate-free region of muscle and, 2–3 weeks later, cutting the original nerve. The junctional, 16 S form of acetylcholinesterase (AChE) and focal staining for AChE disappeared from the old endplate region within a few days after denervation. In muscles with an ectopic nerve, but not in paired control muscles, 16 S AChE and focal staining were restored in the old endplate region 1–2 weeks after denervation even though nerve fibers could not be detected in that region. These results suggest that the nerve exerts a local effect, specifying the site at which junctional AChE appears, and a nonlocal effect, perhaps mediated by muscle activity, regulating the amount of junctional AChE.  相似文献   

2.
Development of rat soleus endplate membrane following denervation at birth   总被引:1,自引:0,他引:1  
Rat soleus endplates develop some of their characteristic features before birth and others after birth. Specializations appearing before birth include a localized cluster of acetylcholine receptors (AChRs), an accumulation of acetylcholinesterase (AChE) in the synaptic basal lamina, and a cluster of nuclei near the endplate membrane. In contrast, postsynaptic membrane folds are elaborated during the first three weeks after birth. We denervated soleus muscles on postnatal day 1, before folds had appeared, and followed the subsequent development of endplate regions with light and electron microscopy. We found that the denervated endplates initiated fold formation on schedule and maintained their accumulations of AChRs, AChE, and endplate nuclei. However, the endplates stopped fold formation prematurely and eventually lost their rudimentary folds. At about the same time, the junctional AChR clusters were joined by ectopic patches of AChRs. The former endplate regions also became unusually elongated, possibly as a consequence of the lack of membrane folds. Apparently, endplate membranes have only a limited capacity for further development in the absence of both the nerve and muscle activity.  相似文献   

3.
《Molecular membrane biology》2013,30(1-2):131-157
α-Bungarotoxin (BuTX; 5 μg/ml) completely blocked the endplate potential and extrajunctional acetylcholine (ACh) sensitivity of surface fibers in normal and chronically denervated mammalian muscles, respectively, in about 35 min. A 0.72 ± 0.033 mV amplitude endplate potential returned in normal muscle fibers after 6.5 hr. of washout of α-BuTX, and an ACh sensitivity of 41.02 ± 3.95 mV/nC was recorded in denervated muscle after 6.5 hr of wash (control being 1215 ± 197 mV/nC). A two-step reaction of BuTX with binding sites which may allosterically interact is postulated.

Several pharmacologic differences were noted between the ACh receptors at the normal endplate and those appearing extrajunctionally following denervation. In normal innervated muscles exposed to BuTX in the presence of 20 μM carbamylcholine or decamethonium, washout of both drugs restored twitch to control levels within 2 hr. Endplate potentials large enough to initiate action potentials were also recorded in most surface fibers. In contrast, these agents, in much higher concentrations (50 μM), were almost ineffective in preventing BuTX blockade of ACh sensitivity in denervated muscle. Hexamethonium (10 and 50 mM) depressed neuromuscular transmission and blocked the action of BuTX in normal muscle in a dose-dependent fashion. On the extrajunctional receptors, hexamethonium (50 mM) was ineffective in protecting against BuTX. We may conclude that at the normal endplate region there are two distinct populations of ACh receptors, both of which react with cholinergic ligands and BuTX, but that a small population (representing ± 1% of the total) reacts with BuTX reversibly. Our findings further suggest a clear distinction between ACh receptors located at the normal endplate region and those of the extrajunctional region of the chronically denervated mammalian muscle.  相似文献   

4.
Abstract: Hemidiaphragms were removed from rats at various times after intrathoracic transection of the left phrenic nerve and were incubated in organ baths containing 1.5 ml of oxygenated, buffered physiologic saline solution, with added glucose and bovine serum albumin. After incubation, the acetylcholinesterase (AChE; EC 3.1.1.7) activities of the bath fluid and of the muscle were determined. Innervated left hemidiaphragms were found to release 107 units of AChE over a 3-h period, corresponding to 1.9% of their total AChE activity. Denervation led to a rapid loss of AChE from the muscle coincident with a transient increase in the outpouring of enzyme activity into the bath fluid. Thus, 1 day after nerve transection the left hemidiaphragm contained only 68% of the control amount of AChE activity, but released 140% as much as control. After 3 or 4 days of denervation, the AChE activity of the diaphragm stabilized at 35% of the control value. Release also fell below control by this time, but not as far. One week after denervation the release, 69 units per 3 hr, corresponded to 3.3% of the reduced content of AChE activity in the muscle, indicating that denervation caused an increase in the proportion of AChE released. Sucrose density gradient ultracentrifugation showed that 10S AChE accounted for more than 80% of the released enzyme activity at all times. The results did not rule out the possibility, however, that the released enzyme originally stemmed from 4S or 16S AChE in the diaphragm.  相似文献   

5.
With the aim of investigating the roles of motor innervation and activity on muscle characteristics, we studied the molecular forms of acetylcholinesterase (AChE) in fast-twitch (semimembranosus accessorius; SMa) and slow-twitch (semimembranosus proprius; SMp) muscles of the rabbit. We have shown that SMa and SMp express different patterns and tissue distribution of AChE forms and that the effect of long denervation varies with age. Three principal findings concerning expression of AChE molecular forms emerge from these studies. (1) The activity of AChE and the pattern of its molecular forms are particularly altered in adult denervated SMa and SMp muscles. AChE activity increases by 10-fold in both muscles, but asymmetric forms disappear in SMa and increase by 20-fold in SMp muscles. A similar alteration of AChE is found after tenotomy of these muscles, showing that the effect of denervation may be partly due to suppression of muscle activity. (2) The different changes occurring in the composition of AChE molecular forms in adult denervated SMa and SMp muscles are consistent with fluorescent staining with anti-AChE monoclonal antibodies and with DBA or VVA lectins, which bind to AChE asymmetric, collagen-tailed forms. These lectins poorly stain denervated SMa muscle surfaces but intensely stain neuromuscular junctions and extrasynaptic areas in denervated SMp muscle. (3) In contrast with the adult, denervation of 1-day-old muscles does not markedly modify the total amount of AChE or the proportions of its molecular forms, despite dramatic effects on muscle structure. These results are supported by studies of labeling with fluorescent DBA: the lectin only slightly stains the muscle fiber surface of denervated 15-day-old SMp muscle. Taken together, these data show that denervated muscles escape physiological regulation, producing increased levels of AChE with highly variable cellular distribution and patterns of molecular forms, depending on the age of operation and on the type of muscle.  相似文献   

6.
Multiple molecular forms of acetylcholinesterase (AChE EC 3.1.1.7) from fast and slow muscle of rat were examined by velocity sedimentation. The fast extensor digitorum longus muscle (EDL) hydrolyzed acetylcholine at a rate of 110 mumol/g wet weight/hr and possessed three molecular forms with apparent sedimentation coefficients of 4S, 10S, and 16S which contribute about 50, 35, and 15% of the AChE activity. The slow soleus muscle hydrolyzed acetylcholine at a rate of 55 mumol/g wet weight/hr and has a 4S, 10S, 12S, and 16S form which contribute 22, 18, 34, and 26% of AChE activity, respectively. A single band of AChE activity was observed when a 1M NaCl extract with CsCl (0.38 g/ml) was centrifuged to equilibrium. Peak AChE activity from EDL and SOL extracts were found at 1.29 g/ml. Resedimentation of peak activity from CsCl gradients resulted in all molecular forms previously found in both muscles. Addition of a protease inhibitor phenylmethylsulfonyl chloride did not change the pattern of distribution. The 4S form of both muscles was extracted with low ionic strength buffer while the 10S, 12S, and 16S forms required high ionic strength and detergent for efficient solubilization. All molecular forms of both muscles have an apparent Km of 2 x 10(-4) M, showed substrate inhibition, and were inhibited by BW284C51, a specific inhibitor of AChE. The difference between these muscles in regards to their AChE activity, as well as in the proportional distribution of molecular forms, may be correlated with sites of localization and differences in the contractile activity of these muscles.  相似文献   

7.
Experimental denervation of adult mouse sternocleidomastoid muscle results in a decrease in total AChE. The most rapid change essentially affects the tailed, asymmetric 16 S AChE, since one day after nerve section, “16S” AChE is already significantly decreased to about 70% of its control value. We found that both background and junctional “16S” AChE are affected by this rapid decrease. Later, a sharp fall in “10S” and “4S” AChE occurs about seven days after denervation when muscle atrophy develops with loss of weight and proteins. A gaussian analysis of the sedimentation profiles of AChE extracted from denervated muscle shows that there is not only an early rapid decrease in 16 S AChE but also a decrease in the monomeric 3.3S AChE. This result suggests that there is a very rapid turn-over of two molecular forms of AChE, the supposedly monomeric precursor and the complex asymmetric 16S AChE.  相似文献   

8.
In adult rat sternocleidomastoid muscle, AChE is concentrated in the region rich in motor end-plates (MEP). All major AChE forms, "16 S," "10 S," and "4 S," are accumulated at high levels, and not only "16 S" AChE. After denervation, muscle AChE decreases; 2 weeks after denervation, low levels (20-40% of control) are reached for all forms. During the following weeks, a slow but steady increase in "10 S" and "16 S" AChE occurs in the denervated muscle. At this stage, all forms are again observed to be highly concentrated in the region containing the old sites of innervation. Thus, in adult rat muscle the structures able to accumulate "16 S," "10 S," and "4 S" AChE in the MEP-rich regions remain several months after denervation. In normal young rat sternocleidomastoid muscle at birth, all AChE forms are already accumulated in the MEP-rich region. After denervation at birth, the denervated muscle loses its ability to keep a high concentration of "4 S," "10 S," and "16 S" AChE in the old MEP-rich region. All AChE forms are still present 1 month after denervation, but they are decreased and diffusedly distributed over the whole length of the muscle. In particular, "16 S" AChE is detected in the same proportion (10-15%) all along the denervated muscle. Thus, the diffuse distribution of AChE, and especially "16 S" AChE, after neonatal denervation, contrasts with the maintained accumulation observed in adult denervated muscle. It seems that denervation of young muscle results in a specific loss of the muscle ability to concentrate high levels of all AChE forms at the old sites of innervation.  相似文献   

9.
Rat obturator nerve 16S acetylcholinesterase (16S AChE) was separated by sucrose gradient velocity sedimentation and compared to the 16S form of AChE similarly derived from endplate regions of anterior gracilis muscles. The 16S AChE from both tissues could only be extracted in high ionic strength buffer; as it aggregated under low ionic strength conditions. Treatment of nerve and muscle 16S AChE with purified collagenase, in the presence of calcium, caused an identical shift in the enzyme's sedimentation coefficient to 17.5S. Other properties which were also equivalent for 16S AChE from both tissue sources included: an excess substrate inhibition above 2×10–3 M acetylcholine andK m of 1.6×10–4 M, relative sensitivity to the specific inhibitors BW284C51 (I50 of 5×10–8 M) and Iso-OMPA (I50 of 5×10–4 M), and a half maximal thermal inactivation at 62.5°C. These and additional results indicate that the 16S forms of AChE in both tissues are analogous molecules, which have a highly asymmetric conformation probably containing a collagen-like domain. The present findings are also consistent with the view that motor neurons provide at least a fraction of the 16S AChE present at the neuromuscular junction.  相似文献   

10.
Acetylcholinesterase (AChE; EC 3.1.1.7) isoenzymes in gracilis muscles from adult Sprague-Dawley rats were studied 24-96 h after obturator nerve transection. Results show a selective denervation-induced increase in the globular G4 isoform, which is predominantly associated with the plasmalemma. This enzymatic increase was (a) transient (occurring between 24 and 60 h) and accompanied by declines in all other identifiable AChE isoforms; (b) observed after concurrent denervation and inactivation of the enzyme with diisopropylfluorophosphate, but not following treatment with cycloheximide; and (c) more prominent in the extracellular compartment of muscle endplate regions. Aside from this transient change, G4 activity did not fall below control levels, indicating that at least the short-term maintenance of G4 AChE (i.e., at both normal and temporarily elevated levels) does not critically depend on the presence of the motor nerve. In addition, this isoform's activity increases in response to perturbations of the neuromuscular system that are known to produce elevated levels of acetylcholine (ACh), such as short-term denervation and exercise-induced enhancement of motor activity. The present study is consistent with the hypothesis that individual AChE isoforms in gracilis muscle are subject to distinct modes of neural regulation and suggests a role for ACh in modulating the activity of G4 AChE at the motor endplate.  相似文献   

11.
Abstract: The formation of ectopic junctions between the foreign fibular nerve and the soleus muscle of young (35-day-old) and mature (200-day-old) adult rats was induced by severing the normal nerve 4 weeks after implanting the foreign nerve. The various molecular forms of ace-tylcholinesterase (AChE) were studied both at the implanted region and at the original denervated endplates. The velocity of contraction was also studied. In young rats the 16S form was first detected in the ectopic junctions around day 5 after reinnervation; this form rapidly increased during the following weeks, reaching a plateau by day 20. By contrast, in mature rats the appearance of the 16S AChE was dramatically delayed; in fact, it could not be observed before day 80 after reinnervation. (The 16S AChE form appeared at day 20 after reinnervation in the original denervated endplates of young rats; however, at the same time, no effect was observed in mature animals.) The original, slow muscle fibers of the soleus became faster upon reinnervation; this change occurred also much earlier in younger than in mature rats. Our results indicate a loss of plasticity in the skeletal muscle of mature rats. We suggest caution in the use of the ectopic innervation model to study development in mature adult rats.  相似文献   

12.
Abstract— Cat geniohyoid muscle samples containing endplate regions, when incubated in vitro at 37°C in phosphate buffer (pH 73, release acetylcholinesterase (AChE; EC 3.1.1.7) to the bathing medium. By treating the muscle samples with collagenase (EC 3.4.4.19), it was confirmed that most of the AChE released came from the endplates. Enzyme liberation was studied 10 days after either local injection of 10mM-cokhicine into the hypoglossal nerve or following nerve transection. Results showed that the rate of release is increased by denervation, but is not affected by axoplasmic transport blockage. It is postulated that the cellular contact between nerve and muscle—altered by denervation but not by interruption of axoplasmic transport—is an essential factor in maintaining the localization of end-plate AChE within the synaptic cleft substance. This does not invalidate the possible participation of ACh and muscle activity in such enzyme localization.  相似文献   

13.
Girard E  Bernard V  Minic J  Chatonnet A  Krejci E  Molgó J 《Life sciences》2007,80(24-25):2380-2385
At the neuromuscular junction (NMJ) acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) can hydrolyze acetylcholine (ACh). Released ACh quanta are known to diffuse rapidly across the narrow synaptic cleft and pairs of ACh molecules cooperate to open endplate channels. During their diffusion through the cleft, or after being released from muscle nicotinic ACh receptors (nAChRs), most ACh molecules are hydrolyzed by AChE highly concentrated at the NMJ. Advances in mouse genomics offered new approaches to assess the role of specific cholinesterases involved in synaptic transmission. AChE knockout mice (AChE-KO) provide a valuable tool for examining the complete abolition of AChE activity and the role of BChE. AChE-KO mice live to adulthood, and exhibit an increased sensitivity to BChE inhibitors, suggesting that BChE activity facilitated their survival and compensated for AChE function. Our results show that BChE is present at the endplate region of wild-type and AChE-KO mature muscles. The decay time constant of focally recorded miniature endplate currents was 1.04 +/- 0.06 ms in wild-type junctions and 5.4 ms +/- 0.3 ms in AChE-KO junctions, and remained unaffected by BChE-specific inhibitors, indicating that BChE is not limiting ACh duration on endplate nAChRs. Inhibition of BChE decreased evoked quantal ACh release in AChE-KO NMJs. This reduction in ACh release can explain the greatest sensitivity of AChE-KO mice to BChE inhibitors. BChE is known to be localized in perisynaptic Schwann cells, and our results strongly suggest that BChE's role at the NMJ is to protect nerve terminals from an excess of ACh.  相似文献   

14.
The effects of certain protease inhibitors on end-plate acetylcholinesterase (AChE) activity, as well as on wet weight and total protein, were studied in vivo in intact and denervated anterior gracilis muscles from the rat. A combination of leupeptin, pepstatin, and aprotinin, administered intraarterially, partly prevented the early (24 h) denervation-induced decrease in muscle weight and protein content. In turn, leupeptin and aprotinin, either alone or in combination, markedly reduced the decay of AChE activity in the denervated muscles, whereas pepstatin alone was ineffective. Such effects were additive in that the inhibitors in combination were more effective than when they were used separately. Additional experiments indicated that none of the inhibitors, at the concentrations used, affected AChE activity directly, nor did they have a significant effect during processing of the muscle samples. These findings indicate that the initial decay of AChE activity with denervation was effectively reduced by the inhibitors, probably through inactivation of proteolytic enzymes which, otherwise, would be increase in denervated muscle.  相似文献   

15.
High endocytotic activity after denervation of skeletal muscle occurs in a proportion of muscle fibers (both slow and fast fiber types) in the endplate region. The present study was performed in order to examine if a periodicity in the endocytotic activity could explain why the process is not observed in all fibers at a given time. Three markers, horseradish peroxidase (HRP), rhodamine B isothiocyanate-labeled dextran, and fluorescein isothiocyanate-labeled dextran were used to demonstrate endocytotic activity of muscle fibers of the denervated mouse hemidiaphragm in vivo. Acetylcholine esterase staining was used in conjunction with HRP uptake to determine the proportion of denervated muscle fibers with endocytotic activity in the endplate region at any one time. The results show that 25-50% of the muscle fibers display high endocytotic activity in the endplate region at a given time 10 days after denervation. The existence of a periodicity in this endocytotic activity is suggested by results obtained using two different endocytotic markers administered at time intervals of 0-7 days. We conclude that loss of contact with the innervating motorneuron induces a high endocytotic activity which occurs periodically in the perisynaptic region of skeletal muscle fibers.  相似文献   

16.
Denervated neonatal rat sternocleidomastoid muscle has decreased levels of total AChE when compared to control muscle. Denervated versus control values of total muscle AChE present a three-phase curve in function of time after denervation. There is a rapid initial fall 0-3 days after denervation, an increase during about 2 weeks, then again a decrease in total AChE. Thus, there is a transitory net accumulation of AChE after the initial fall of activity in denervated developing muscle. Extrasynaptic areas of high AChE activity develop between 1 and 2 weeks after denervation and remain visible up to 1 month after denervation before vanishing. An electron microscope study shows that these accumulations are internal to the muscle fiber, close to a limited number of muscle nuclei and associated to the sarcoplasmic reticulum and nuclear envelope, but not to the T-tubule system. As found in adult rat muscle, the initial fall in AChE affects first the 16 S AChE form, and soon after, the 4 S and 10 S AChE forms. A main difference with adult muscle is the sudden increase and predominance over other forms of 10 S AChE 2 weeks after denervation at birth. Later, the decrease in AChE affects 16 S and 4 S AChE before 10 S AChE. The regions rich in extrasynaptic sites of AChE accumulation possess a very high proportion of 10 S AChE. Thus, the mechanisms of biosynthesis, intracellular transport and/or secretion of AChE may be very different in young, developing muscle compared to adult muscle.  相似文献   

17.
The present work addresses the effects of short-term denervation on acetylcholinesterase (AChE; EC 3.1.1.7) isoenzymes in anterior gracilis muscles from adult male Sprague-Dawley rats. It examines possible relationships between AChE isoform changes and other denervation phenomena, and evaluates the importance of acetylcholine (ACh)-nicotinic receptor interactions in selectively modulating the activity of G4 AChE. Results confirm that denervation causes a specific, transient increase in G4 AChE and show that: most of the increment can be explained by the hydrophobic species of this isoenzyme; changes in AChE isoforms markedly precede the onset of spontaneous electromechanical activity (fibrillation), as well as acetylcholine receptor (AChR) proliferation; and the G4 AChE response is eliminated when AChRs are blocked by alpha-bungarotoxin treatment performed before but not after (24 h) denervation. These data point to the absence of direct causal relationships between the G4 AChE increment and fibrillation, AChR proliferation, or changes in the release of this isoform from denervated muscle. In turn, they suggest the participation of AChR activation in triggering the G4 AChE response and emphasize the possible role of ACh-AChR interactions in modulating the production of this isoenzyme in not only denervated but also innervated fast-twitch muscles.  相似文献   

18.
19.
The evolution of acetylcholinesterase (AChE) activity and AChE molecular form distribution were studied in slow-tonic anterior latissimus dorsi (ALD) and in fast-twitch posterior latissimus dorsi (PLD) muscles of chickens 2-18 days of age. In ALD as well as in PLD muscles, the AChE-specific activity increased transiently from day 2 to day 4; the activity then decreased more rapidly in PLD muscle. During this period asymmetric AChE forms decreased dramatically in ALD muscle and the globular forms increased. In PLD muscle, the most striking change was the decline in A8 form between days 2 and 18 of development. Denervation performed at day 2 delayed the normal decrease in AChE-specific activity in PLD muscle, whereas little change was observed in ALD muscle. Moreover, A forms in these two muscles were virtually absent 8 days after denervation. Direct electrical stimulation depressed the rise in AChE-specific activity in denervated PLD muscle and prevented the loss of the A forms. Furthermore, the different molecular forms varied according to the stimulus pattern. In ALD muscle, electrical stimulation failed to prevent the effect of denervation. This study emphasizes the differential response of denervated slow and fast muscles to electrical stimulation and stresses the importance of the frequency of stimulation in the regulation of AChE molecular forms in PLD muscle during development.  相似文献   

20.
Abstract— Acetylcholinesterase (AChE) and pseudocholinesterase (°ChE) were studied in vivo and during the first several months of development of pectoral and posterior latissimi dorsi (PLD) muscles in normal and dystrophic chickens. Muscle extracts were prepared in a high ionic strength-nonionic detergent medium in the presence of protease inhibitors, in order to obtain complete solubilization and to prevent degradation of intrinsic molecular forms of both enzymes. In both normal and dystrophic pectoral muscles levels of AChE and °ChE increase rapidly in vivo, °ChE accounting for 5–10% of total cholinesterase activity. In the normal pectoral muscle the concentration of both enzymes drops rapidly after hatching with increasing muscle mass; total AChE per muscle remains relatively constant for 30 days post-hatch. In the dystrophic pectoral muscle both AChE and °ChE accumulate after hatching, resulting in greatly elevated levels (approx 10–25-fold) of both enzymes throughout the period studied. Multiple molecular forms of AChE and °ChE are observed in the pectoral muscle by sucrose gradient centrifugation. Four principal forms are distinguished: two light (L1, L2), one medium (M), and one heavy (H2). The °ChE forms are 0.5–1.0 S units lighter than the corresponding AChE forms. L2 is the predominant light form of AChE, whereas L1 is the major light °ChE form detected. The lighter forms of AChE predominate in normal and dystrophic embryonic pectoral muscle at day 14, being replaced by the H2 form by day 19. H2 is the major °ChE form detected at day 19. After hatching, H2 AChE is the predominant form found in both of the normal muscles studied. In the dystrophic pectoral muscle, progressive accumulation of the L2 form of AChE is detected as early as day 4 post-hatch; this form eventually becomes predominant, although the heavier forms are also elevated. In PLD muscle the same phenomenon occurs, but with a slower time course. In dystrophic pectoral muscle a similar rise in the L1 form of °ChE is first observed by day 4, with heavier forms also elevated in the mature muscle. Thus the alteration in the control of these two enzymes in dystrophic fast-twitch muscles results in an accumulation of the light forms of AChE and °ChE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号