首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colony formation in agar by multipotential hemopoietic cells.   总被引:7,自引:0,他引:7  
Agar cultures of CBA fetal liver, peripheral blood, yolk sac and adult marrow cells were stimulated by pokeweed mitogen-stimulated spleen conditioned medium. Two to ten percent of the colonies developing were mixed colonies, documented by light or electron microscopy to contain erythroid, neutrophil, macrophage, eosinophil and megakaryocytic cells. No lymphoid cells were detected. Mean size for 7-day mixed colonies was 1,800-7,300 cells. When 7-day mixed colonies were recloned in agar, low levels of colony-forming cells were detected in 10% of the colonies but most daughter colonies formed were small neutrophil and/or macrophage colonies. Injection of pooled 7-day mixed colony cells to irradiated CBA mice produced low numbers of spleen colonies, mainly erythroid in composition. Karyotypic analysis using the T6T6 marker chromosome showed that some of these colonies were of donor origin. With an assumed f factor of 0.2, the mean content of spleen colony-forming cells per 7-day mixed colony was calculated to vary from 0.09 to 0.76 according to the type of mixed colony assayed. The fetal and adult multipotential hemopoietic cells forming mixed colonies in agar may be hemopoietic stem cells perhaps of a special or fetal type.  相似文献   

2.
Clonal growth in semisolid agar medium was obtained using cells from 19 of 25 transplanted murine plasmacytomas when the medium was supplemented by whole mouse blood or washed red cells. With different tumors cloning efficiency ranged from 0.01% to 21.6%. With two exceptions, mouse blood did not potentiate colony formation in agar by cells from transplantable myelomonocytic, myeloid, and lymphoid leukemias, reticulum cell sarcomas and fibrosarcomas. The clonal growth of some plasmacytomas was also potentiated by syngeneic thymic, spleen or bone marrow cells. Plasmacytoma colony growth was not stimulated by normal mouse serum but serum from mice injected with endotoxin or polymerised flagellin stimulated colony growth by some plasmacytomas. The active serum factor was not the colony stimulating factor (CSF) and its appearance after antigenic stimulation was not T cell-dependent. Preimmunised mice failed tq respond to antigenic stimulation. Whole body irradiation did not induce a rise in the capacity of serum to stimulate colony formation by plasmacytoma cells.  相似文献   

3.
H R Maurer  R Henry 《Blut》1976,33(1):11-22
Mouse bone marrow cells were grown in semi-solid agar contained in glass capillary tubes. Several parameters affecting colony formation in the capillaries were studied. 10(4) cells in 100 mul incubation medium within one capillary produced 22 to 30 colonies of granulocytes and macrophages. Compared with the common petri dishes glass capillaries offer several advantages under the conditions used: 1. A twofold higher plating efficiency. 2. Applicability to optical scanning by light scattering and electronic counting, allowing automation and greatly improving sensitivity, statistical accuracy and reproducibility. Kinetics of colony growth can also be monitored. 3. Diminished risk of bacterial and fungal contamination. 4. A more than tenfold lower need for materials on similar statistical errors. Substituting methylcellulose for agar resulted in colonies of fibroblast-like cells adherent to glass surface. Glass non-adherent cells showed a threefold higher plating efficiency in agar.  相似文献   

4.
5.
The cells of the rabbit bone marrow produced endogenous pyrogen in response to stimulation with bacterial lipopolysaccharide. Incubation of the cells in medium No 199 containing a 15% homologous serum is optimal for the release of pyrogen. It is supposed that the cells of the bone marrow take part in the formation of endgenous pyrogen and in the mechanism of pyrexia in the organism.  相似文献   

6.
The influence of B-lymphocytes from various sources on splenic colony formation was studied in the syngeneic system. B-lymphocytes were obtained by panning with IgG-fraction of rabbit anti-mouse Ig, absorbed on Petri dishes. In addition, adherent cells, Thy-1+ and SC-1+ were eliminated from the fraction of Ig(+)-cells. SC-1- and SC-1+ fractions, containing, respectively, stem cells and T-lymphocyte precursors, were obtained by panning with IgG-fraction of rabbit anti-SC-1 serum. SC-1- cells transferred to irradiated syngeneic mice did not induce colony formation in the spleen. Introduction of SC-1- and SC-1+ cells induced formation of colonies. A similar helper effect occurred when SC-1(-)-cells were introduced with bone marrow or lymph node B-cells, but not with splenic B-cells. Splenic, but not bone marrow and lymph node B-cells inhibited colony formation by combination of SC-1- and SC-1+ cells. All effects of Ig+ cells were abolished by treatment of cells with rabbit anti-MBLA serum. Thus, B-cells of various origin can either enhance or inhibit colony formation. The enhancing of inhibitory effect after B (MBLA+)-cells elimination from suspension of bone marrow and lymph node (but not spleen) Ig(+)-cells resulted from the activity of B-contrasuppressors.  相似文献   

7.
8.
Summary Cells from fetal or neonatal skeleton can synthesize bone-like tissue in vitro. In contrast, formation of bone-like tissue in vitro by cells derived from adult animals has rarely been reported and has not been achieved using cells from bone marrow. We have explored development of bone-like tissue in vitro by bone marrow stromal cells. Marrow stromal cells obtained from 40–43-day-old Wistar rats were grown in primary culture for 7 days and then subcultured for 20–30 days. Cells were cultured in either -minimal essential medium containing 15% fetal bovine serum, antibiotics, and 50 g/ml ascorbic acid, or the above medium supplemented with either 10 mM Na--glycerophosphate, 10-8 M dexamethasone, or a combination of both. Cultures were examined using phase-contrast microscopy, undemineralized and demineralized tissue histology, histochemistry (for alkaline phosphatase activity), immunohistochemistry (for collagen type, osteonectin, and bone Glaprotein), scanning and transmission electron microscopy, energy dispersive X-ray microanalysis, and X-ray diffraction. Collagenous, mineralized nodules exhibiting morphological and ultrastructural characteristics similar to bone were formed in the cultures, but only in the presence of both -glycerophosphate and dexamethasone. Cells associated with the nodules exhibited alkaline phosphatase activity. The matrix of the nodules was composed predominantly of type-I collagen and both osteonectin and Glaprotein were present. X-ray microanalysis showed the presence of Ca and P, and X-ray diffraction indicated the mineral to be hydroxyapatite. The nodules were also examined for bone morphogenetic protein-like activity. Paired diffusion chambers containing partly demineralized nodules and fetal muscle were implanted intraperitonealy in rats. Induction of cartilage in relation to muscle was observed histologically after 40 days in the chambers. This finding provided further support for the bone-like nature of the nodules. The observations show that bone-like tissue can be synthesized in vitro by cells cultured from young-adult bone marrow, provided that the medium contains both -glycerophosphate and, particularly, dexamethasone.  相似文献   

9.
10.
The authors attempted to cultivate frozen mouse bone marrow cells in a semisolid medium. They demonstrated that the stem haematopoietic cells of frozen mouse bone marrow were capable of proliferation and of colony formation on agar. The much smaller number of colonies from frozen mouse bone marrow (about 80% fewer) compared with fresh marrow is evidence that part of the stem haematopoietic cell population retains proliferative capacity even after freezing.  相似文献   

11.
12.
Multi-differentiation capability is an essential characteristic of bone marrow mesenchymal stem cells (BMSCs). Method on obtaining higher-quality stem cells with an improved differentiation potential has gained significant attention for the treatment of clinical diseases and developmental biology. In our study, we investigated the multipotential differentiation capacity of BMSCs under simulated microgravity (SMG) condition. F-actin staining found that cytoskeleton took on a time-dependent change under SMG condition, which caused spindle to round morphological change of the cultured cells. Quantitative PCR and Western Blotting showed the pluripotency marker OCT4 was up-regulated in the SMG condition especially after SMG of 72 h, which we observed would be the most appropriate SMG duration for enhancing pluripotency of BMSCs. After dividing BMSCs into normal gravity (NG) group and SMG group, we induced them respectively in endothelium oriented, adipogenic and neuronal induction media. Immunostaining and Western Blotting found that endothelium oriented differentiated BMSCs expressed higher VWF and CD31 in the SMG group than in the NG group. The neuron-like cells derived from BMSCs in the SMG group also expressed higher level of MAP2 and NF-H. Furthermore, the quantity of induced adipocytes increased in the SMG group compared to the NG group shown by Oil Red O staining, The expression of PPARγ2 increased significantly under SMG condition. Therefore, we demonstrated that SMG could promote BMSCs to differentiate into many kinds of cells and predicted that enhanced multi-potential differentiation capacity response in BMSCs following SMG might be relevant to the changes of cytoskeleton and the stem cell marker OCT4.  相似文献   

13.
Addition of human peripheral blood leukocytes or a medium in which the leukocytes were cultivated to the monolayer culture of human bone marrow produced an inhibitory action of the growth of the fibroblast colonies. This effect was not associated with the immunological incompatibility of the cells in a culture--autologous blood cells produced the same action as the heterologous ones. The factor inhibiting the fibroblast growth failed to depress the growth of other cells, of macrophages in particular.  相似文献   

14.
15.
16.
Gravitational field-flow fractionation is a relatively simple experimental technique. This method was used for the characterization of stem cells from mouse bone marrow. Because these cells are bigger than the other cells in bone marrow, it is possible to separate them from the mixture. The fractions collected after passing through the separation channel were characterized using a Coulter Counter and used for transplantation into irradiated mice.  相似文献   

17.
The ability of rat skin fibroblasts (RSF) and human periodontal ligament fibroblasts (HPL) to inhibit the formation of mineralised bone nodules in rat bone marrow stromal cell (BMSC) cultures was studied. Co-culture of HPL or RSF with BMSC resulted in a large reduction of bone nodule formation when compared with controls. Conditioned medium from HPL or RSF cultures inhibited bone nodule formation in a dose-dependent manner. HPL-conditioned medium depressed cell proliferation and alkaline phosphatase expression in BMSC cultures. These effects were not due to increased cytotoxicity or nutrient depletion. Inhibitory activity was recovered in a fraction of less than 1 kD following ultrafiltration and was insensitive to freeze-thawing. The inhibitory activity was blocked when HPL cultures were grown in the presence of 10(-5) M indomethacin. Dose-dependent inhibiton of bone nodule formation was also observed in cultures incubated with prostaglandins E2 (at 10(-6) M) or F2 alpha (at 10(-7) M). The results indicate that fibroblasts may inhibit osteoblast differentiation and function in part by release of soluble factors including prostaglandins.  相似文献   

18.
The neovascularization of tissues is accomplished by two distinct processes: de novo formation of blood vessels through the assembly of progenitor cells during early prenatal development (vasculogenesis), and expansion of a pre-existing vascular network by endothelial cell sprouting (angiogenesis), the main mechanism of blood vessel growth in postnatal life. Evidence exists that adult bone marrow (BM)-derived progenitor cells can contribute to the formation of new vessels by their incorporation into sites of active angiogenesis. Aim of this study was to investigate the in vitro self-organizing capacity of human BM mononuclear cells (BMMNC) to induce vascular morphogenesis in a three-dimensional (3D) matrix environment in the absence of pre-existing vessels. Whole BMMNC as well as the adherent and non-adherent fractions of BMMNC were embedded in fibrin gels and cultured for 3-4 weeks without additional growth factors. The expression of hematopoietic-, endothelial-, smooth muscle lineage, and stem cell markers was analyzed by immunohistochemistry and confocal laser-scanning microscopy. The culture of unselected BMMNC in 3D fibrin matrices led to the formation of cell clusters expressing the endothelial progenitor cell (EPC) markers CD133, CD34, vascular endothelial growth factor receptor (VEGFR)-2, and c-kit, with stellar shaped spreading of peripheral elongated cells forming tube-like structures with increasing complexity over time. Cluster formation was dependent on the presence of both adherent and non-adherent BMMNC without the requirement of external growth factors. Developed vascular structures expressed the endothelial markers CD34, VEGFR-2, CD31, von Willebrand Factor (vWF), and podocalyxin, showed basement-membrane-lined lumina containing CD45+ cells and were surrounded by alpha-smooth muscle actin (SMA) expressing mural cells. Our data demonstrate that adult human BM progenitor cells can induce a dynamic self organization process to create vascular structures within avascular 3D fibrin matrices suggesting a possible alternative mechanism of adult vascular development without involvement of pre-existing vascular structures.  相似文献   

19.
Osteoclasts are the cells that resorb bone. It is generally presumed, on the basis of indirect experiments, that they are derived from the hemopoietic stem cell. However, this origin has never been established. We have developed an assay for osteoclastic differentiation in which bone marrow cells are incubated in liquid culture on slices of cortical bone. The bone slices are inspected in the scanning electron microscope after incubation for the presence of excavations, which are characteristic of osteoclastic activity. We have now incubated bone marrow cells at low density, or a factor-dependent mouse hemopoietic cell line (FDCP-mix A4) with 1,25 dihydroxyvitamin D3 (a hormone which we have previously found induces osteoclastic differentiation) with and without murine bone marrow stromal cells, or with and without 3T3 cells, on bone slices. Neither the bone marrow cells nor the bone marrow stromal cells alone developed osteoclastic function even in the presence of 1,25 dihydroxyvitamin D3. However, extensive excavation of the bone surface was observed, only in the presence of 1,25 dihydroxyvitamin D3, on bone slices on which bone marrow stromal cells were cocultured with low-density bone marrow cells or the hemopoietic cell line. Similar results were obtained when the bone marrow stromal cells were killed by glutaraldehyde fixation; 3T3 cells were unable to substitute for stromal cells. These results are strong evidence that osteoclasts derive from the hemopoietic stem cell and suggest that although mature osteoclasts possess neither receptors for nor responsiveness to 1,25 dihydroxyvitamin D3, the hormone induces osteoclastic function through a direct effect on hemopoietic cells rather than through some accessory cell in the bone marrow stroma. The failure of 3T3 cells, which enable differentiation of other hemopoietic progeny from this cell line, to induce osteoclastic differentiation suggests that bone marrow stroma possesses additional characteristics distinct from those that induce differentiation of other hemopoietic cells that are specifically required for osteoclastic differentiation.  相似文献   

20.
Embryonic stem cells (ESCs) are a potential source of generating transplantable hematopoietic stem and progenitor cells, which in turn can serve as "seed" cells for hematopoietic regeneration. In this study, we aimed to gauge the ability of mouse ESCs directly differentiating into hematopoietic cells in adult bone marrow (BM). To this end, we first derived a new mouse ESC line that constitutively expressed the green fluorescent protein (GFP) and then injected the ESCs into syngeneic BM via intra-tibia. The progeny of the transplanted ESCs were then analyzed at different time points after transplantation. Notably, however, most injected ESCs differentiated into non-hematopoietic cells in the BM whereas only a minority of the cells acquired hematopoietic cell surface markers. This study provides a strategy for evaluating the differentiation potential of ESCs in the BM micro-environment, thereby having important implications for the physiological maintenance and potential therapeutic applications of ESCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号