首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The kinetics of binding of the cationic surfactant cetyltrimethyl ammonium bromide with the Na salt of carboxymethyl cellulose was studied by the electrometric method using cetyltrimetlyl ammonium+ (CTA+) ion-selective polyvinyl chloride membrane electrode. The binding process followed the first-order kinetics and occurred in three stages. Its affinity increased with increasing CTA bromide concentration and decreased with ionic strength. The activation process comprised moderate E and ΔH and negative ΔS for all three stages with a ΔH < TδS trend proving it to be entropy controlled. The ΔG values followed the trend ΔG < ΔG < ΔG (in accordance with k1 > k2 > k3). The enthalpies (ΔH) and entropies (ΔS) of activation followed a systematic and interdependent trend. The multiple-stage binding kinetics is grossly comparable with the kinetics of binding of proteins to solid surfaces. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The starch–iodine blue complex formation does not involve negatively charged iodine species like I, I, or I; rather, neutral iodine units are involved. The heat of reaction is determined to be about ?110 kJ for every mole of I-I unit in the amylose helix, which suggests that the dissociation of I2 (binding energy 149 kJ/mol) does not take place during the complex formation. Quantum mechanical (INDO CI) calculations indicate that the linear as well as nonlinear polyiodine units, I6, with interiodine distance of 3.0 Å are responsible for characteristic absorbance bands of the starch–iodine complex. Based on our previous article [(1989) J. Polym. Sci. A 27 , 4161] and the present studies we identify (C6H10O5)16.5I6 to be the polymeric unit responsible for the characteristic blue color of the complex.  相似文献   

3.
Four fundamental Raman lines were observed at 159, 111, 55 and 27 cm-1 corresponding to the I bound (I) in amyloses with DP from 20 to 100, regardless of the degree of polymerization of I and the excitation wavelength. The spectral resolution was based on the molar extinction coefficient and molar ellipticity spectra of I. Eight bands, named, S1, S2, ?, S8 from long to short wavelength, were isolated. These were found regardless of the DP. By a resonance excitation Raman study, the characteristics of S3 and S4, comprising the shoulder around 480 nm, were found to be different from those of S1 and S2, comprising the blue band. The assignment of the spectra was based on the electronic states of the monomeric I in the exciton-coupled dimeric unit. It was concluded that the blue band (S1,S2) belonged to the long-axis transitions and the shoulder band (S3,S4) to the short-axis ones on the monmeric coordinate system.  相似文献   

4.
In this note it is shown that the block design with incidence matrix Ñ = [NNN], where N = c1hNh + coh (11′–Nh). coh and c1h are any non-negative integers and Nh,h = 1, 2,…,p, are incidence matrices of balanced incomplete block designs with the same number of treatments t, is a balanced block design with the block sizes exceeding the number of treatments. In derivation the matrix M0, introduced by CALIński (1971) is utilized.  相似文献   

5.
Molecular mechanics calculations have been used to determine the preferred physical association sites of the known alkylating agent dimethyl aziridinium ion (Az+) and a CH prototype test probe with B-form, tetrameric DNA sequences. Electrostatic interactions are most important in determining these preferential physical association sites. In turn, the intermolecular energy minima depend on the charge distribution assigned to the DNA sequence. However, for three reported DNA charge distributions, only two distinct sets of energy minima were obtained for the CH-like ion interacting with (G-C)4, (A-T)4, and [(G-C)·(A-T)]2 deoxyribonucleic acids. These minima correspond to physical association geometries in which the CH-like ion is near known alkylation sites. The results of the Az+ … [(G-C)·(A-T)]2 interaction are virtually identical to those found for the CH-like ion. Aqueous solvation energetics have little effect on the physical association of Az+ with [(G-C)·(A-T)]2.  相似文献   

6.
A mean-square helical hydrophobic moment, 〈h2〉, is defined for polypeptides in analogy to the mean-square dipole moment, 〈μ2〉, for polymer chains. For a freely jointed polymer chain, 〈μ2〉 is given by Σm, where mi denotes the dipole moment associated with bond i. In the absence of any correlations in the hydrophobic moments of individual amino acid residues in the helix, 〈h2〉 is specified by ΣH, where Hi denotes the hydrophobicity of residue i. The tendency for correlations in orientations of residue hydrophobic moments in helices therefore dictates the size of 〈h2〉/〈H2〉, where 〈H2〉 denotes the average value of ΣH for all helices. The value of 〈h2〉/〈H2〉 will be greater than one in amphiphilic helices. A necessary prerequisite for this diagnostic usage of 〈h2〉/〈H2〉 is that the residue hydrophobic moment be oriented prependicular to the principal axis of the helix. Matrix-generation schemes are formulated that permit rapid evaluation of 〈h2〉 and 〈H2〉. The behavior of 〈h2〉/〈H2〉 is illustrated by calculations performed for model sequential copolypeptides.  相似文献   

7.
The relationship between cytosolic concentrations of Ca2+ (Ca) and Na+ (Na) were studied in preparations of rat submandibular and pancreatic acini loaded with the Ca2+-sensitive dye Fura-2 or the Na+-sensitive dye SBFI. Pancreatic acini showed no changes in Na during either transient or persistent changes in Ca. Increases in Ca produced by exposure of submandibular gland acini to carbachol, a muscarinic cholinergic agonist, were followed by an increase in Na after a delay of 5–10 s. When Ca2+ stores were mobilized without Ca2+ influx Na also increased, but in acini loaded with BAPTA, a nonfluorescent Ca2+ chelator, the transient increase in Ca2+ caused by mobilization of stored Ca2+ was virtually abolished, as was the increase in Na. In the presence of ionomycin, increases in Ca were followed by increases in Na. Ca2+-dependent increases in Na were abolished in Na+-free buffer and by the presence of furosemide, a blocker of Na+-K+-2Cl cotransport. In other studies, extracellular ATP (ATPo) produced an increase in Ca and Na. The steady-state increase in Ca was reduced by increasing extracellular Na+ concentrations (Na) in dose-dependent fashion (IC50 = 16.4 ± 4.7 mM Na+). Likewise, increasing Na reduced ATPo-stimulated 45Ca2+ uptake at steady state (IC50 = 15.8 ± 9.2 mM Na+). Changing Na had no effect on carbachol-stimulated increases in Ca. We conclude that, in rat submandibular gland acini, ATPo promotes an increase in Ca and Na via a common influx pathway and that, under physiologic conditions, Na+ significantly limits the ATPo-stimulated increase in Ca. In the presence of carbachol, however, Na rises in Ca-dependent fashion in submandibular gland acini via stimulation of Na+-K+-2Cl cotransport. © 1996 Wiley-Liss, Inc.  相似文献   

8.
In order to clarify the characteristics of the basic units responsible for the blue coloring of iodine/iodide in amylose, we made a resonance Raman spectroscopic study at several KI concentrations using excitation by Ar+, He-Ne, and Kr+ lasers and amyloses with the degrees of polymerization (DP) of 30, 100, 300, and 1000. Similar Raman spectra were observed, regardless of the KI and I2 concentrations, DP, and excitation wavelengths. Four Raman lines appearing at 159, 111, 55, and 27 cm?1 were obviously fundamental tones, with a degree of depolarization ρ of ca. 1/3 for every spectrum. However, the internal ratios of the intensities of the 159, 55, and 27 cm?1 lines to that of the 111-cm?1 line decreased with increasing KI concentration. Based on the value of ρ, the assignment of the fundamental lines was made by taking a schematic model of the true motions as a projection in separately analyzing the modes of stretching and bending vibrations for a pseudolinear polyiodide chain, which we found to be perturbed by the external forces of the amylose lattice. In accordance with the variation of the force constants from the assignment of the spectra associated with the change in the composition of the bound species, it was concluded that the basic unit changed from I to I through I with decreasing KI concentration.  相似文献   

9.
The intrinsic viscosity and sedimentation coefficient, of native and single-stranded T7 DNA have been determined at 25°C as a function of ionic strength in neutral and alkaline NaCl. The relationship between [η] and S,w is well represented by the Mandelkern-Flory equation over the entire range of conditions between 0.0013 and 1M Na+. An apparent discrepancy between the two methods at moderate to high ionic strengths is probably due to a change in V with ionic strength. It appears that [η] is a more sensitive and reliable measure of molecular expansion for native DNA, S,w but is a better index of conformational change in single strands, since [η] becomes too small to measure conveniently at high ionic strengths. At moderate to high ionic strengths, denaturation leads to a decrease in [η], although unfolded single strands retain considerable viscosity. At sufficiently low ionic strength, the intrinsic viscosity of the single strands becomes higher than that of native DNA, and the effective volume of a single strand approaches that of the native molecule.  相似文献   

10.
The kinetics of ethidium's intercalative binding to DNA packaged in bacteriophage T7 and two T7 deletion mutants have been determined, using enhancement of fluorescence to quantitate binding. At a constant ethidium concentration, the results can be described as first-order binding with two different rate constants, k (= k1 + k?1) and k (= k2 + k?2). The larger rate constant (k) was at least four orders of magnitude smaller than the comparable first-order forward rate constant for binding to DNA released from its capsid. At 25°C values of k decreased as the amount of DNA packaged per internal volume increased. This latter observation indicates that the rate of ethidium's binding to packaged T7 DNA is limited by an event that occurs inside of the DNA-containing region of T7, not by the crossing of T7 capsid's outer shell. Arrhenius plots of kM are biphasic, indicating a transition for packaged DNA at a temperature of 20°C. The data indicate that k s are limited by either sieving of ethidium during its passage through the packaged DNA or subsequent hindered intercalation.  相似文献   

11.
The effects of altered external sodium and potassium concentrations on steady state, active Na+ + K+ transport in Ehrlich ascites tumor cells have been investigated. Membrane permeability to Na+ and K+, intracellular [Na+] and [K+], and membrane potential were measured. Active cation fluxes were calculated as equal and membrane potential were measured. Active cation fluxes were calculated as equal and opposite to the net, diffusional leak fluxes. Elevation of external K+ (6–60 Mm)by equivalent replacement of Na+ (154–91 mM) inhibits both active Na+ and K+ fluxes, but not proportionally. This results in a decrease of the coupling ratio (rp = -Jkp/J) as external K+ is increased. Elevation of external K+ (3–68 mM) at constant Na+ (92mM) inbibits J, but is without effect on J. The coupling ratio declines from 1.01 ± 0.14 to 0.07 ± 0.05, a 14-fold alteration. Reduction of external Na+ (154–25 mM) at constant K+ (6mM) depresses J, but is without effect on J. The coupling ratio increases from 0.63 ± 0.04 at 154 mM Na+ to 4.5 ± 2.04 at 25 mM Na+. The results of this investigation are consistent with the independent regulation of active cation fluxes by the transported species. Kinetic analysis of the data indicates that elevation of external sodium stimulates active sodium efflux by interacting at “modifier sites” at the outer cell surface. Similarly, external potassium inhibits active potassium influx by interaction at separate modifier sites.  相似文献   

12.
It was found that the cellular Na+-concentration (C) of Lodderomyces elongisporus D is depended on the extracellular K+-concentration (C). The relationship can be described by an equation in the form The function of the natrium ion seem to be to support the utilisation rate of potassium ion at lower extracellular K+-concentration.  相似文献   

13.
Caffeine contractures were induced after K+ -conditioning of skeletal muscles from pigs and mice. K+ -conditioning is defined as the partial depolarization caused by increasing external potassium (K) with [K+]×[Cl?] constant. Conditioning depolarizations that rendered muscles refractory to brief electrical stimulation still enhanced the contracture tension elicited by subsequent direct caffeine stimulation of sarcoplasmic reticulum (SR) calcium release. The effects of K+ -conditioning on caffeine-induced contractures of intact cell bundles reached a maximum at 15–30 mM K and then progressively declined at higher [K+]0. Conditioning with 30 mM K+ for 5 min, which inactivates excitation-contraction (EC) coupling in response to action potentials, both increased the magnitude of caffeine contractures 2–10-fold and shifted the contracture threshold toward lower caffeine concentrations. Enhanced sensitivity to caffeine was inhibited by dantrolene (20 μM) and its watersoluble analogue azumolene (150 μM). These drugs decreased caffeine-induced contractures following depolarization with 4–15 mM K+ to 25–50% of control tension. The inorganic anion perchlorate (CIO), which like caffeine potentiates twitches, increased caffeine-induced contractures ~? twofold after K+ -conditioning (>4 mM). The results suggest that CIO and dantrolene, in addition to caffeine, also influence SR calcium release either directly or by mechanism(s) subsequent to depolarization of the sarcolemma. Moreover, since CIO is known to shift the voltage-dependence of intramembrane charge movement, CIO may exert effects on the transverse-tubule voltage sensors as well as the SR. © 1995 Wiley-Liss, Inc.  相似文献   

14.
A cellular suspension from rat submandibular glands was exposed to different concentrations of NH4Cl, and the variations of the intracellular concentration of calcium ([Ca2+]i) and the intracellular pH (pHi) were measured using fura-2 and 2′,7′-bis-(2-carboxy-ethyl)-5(6)-carboxyfluorescein. More than 5 mmol/l NH4Cl significantly increased the [Ca2+]i without affecting the response to 100 µmol/l carbachol. When exposed to 1 and 5 mmol/l NH4Cl, the cells acidified immediately. At 30 mmol/l, NH4Cl first alkalinized the cells and the pHi subsequently dropped. This drop reflects the uptake of NH ions that dissociate to NH3 and H+ in the cytosol. These protons are exchanged for extracellular sodium by the Na+/H+ exchanger because the presence of an inhibitor of the exchanger in the medium increased the acidification induced by 1 mmol/l NH4Cl. Ouabain partly blocked the uptake of NH. In the combined presence of ouabain and bumetanide (an inhibitor of the Na+-K+-2Cl cotransporter), 1 mmol/l NH4Cl alkalinized the cells. The contribution of the Na/K ATPase and the Na+-K+-2Cl cotransporter in the uptake of NH was independent of the presence of calcium in the medium. Isoproterenol increased the uptake of NH by the cotransporter. Conversely, 1 mmol/l extracellular ATP blocked the basal uptake of NH by the cotransporter. This inhibition was reversed by extracellular magnesium or Coomassie Blue. It was mimicked by benzoyl-ATP but not by CTP, GTP, UTP, ADP, or ADPβS. ATP only slightly inhibited the increase of cyclic AMP (−22%) by isoproterenol but fully blocked the stimulation of the cotransporter by the β-adrenergic agonist. ATP increased the release of 3H-arachidonic acid from prelabeled cells but SK&F 96365, an imidazole-based cytochrome P450 inhibitor, did not affect the inhibition by ATP. It is concluded that the activation of a purinoceptor inhibits the basal and the cyclic AMP-stimulated activity of the Na+-K+-2Cl cotransporter. J. Cell. Physiol. 180:422–430, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

15.
23Na-NMR investigations of counterion exchange reactions of helical DNA   总被引:2,自引:0,他引:2  
Changes in Δν½, the nmr linewidth of 23Na, have been determined during titrations of helical DNA with polyamines (divalent putrescine and trivalent spermidine) and with inorganic cations (Mg2+ and Co(NH3)). In each case additions of a multivalent cation (Mz+) to a solution containing NaDNA and NaCl cause decreases in Δν½, which is a population-weighted average of contributions from nuclei in bound and free environments. Thus, the binding of Mz+ to DNA displaces sodium ions from regions where the quadrupolar relaxation of 23Na is relatively efficient. At a given extent of titration, the binding of a polyamine produces a smaller decrease in Δν½ than does the binding of an inorganic ion of the same valence. The concentration dependence of Δν½ during the course of a titration can be interpreted most simply as a two-state ion-exchange reaction by assuming that the binding of Mz does not alter RB, the average relaxation rate of sodium nuclei that remain bound. On the basis of this assumption, the initial linear portions of titration curves can be analyzed to determine upper bounds for r°, the number of sodium ions bound per DNA phosphate in the absence of any competing counterion. Analyzing the titration curves for the four multivalent competitors leads to a range of upper-bound estimates for r°: 0.5–0.8. The differences in these estimates could indicate that polyamines displace fewer sodium ions from DNA than do their smaller inorganic counterparts. Alternatively, the range in upper-bound estimates for r° could also reflect specific differences in the effects of the various multivalent cations on RB, if this relaxation rate does change during titration.  相似文献   

16.
We used agarose gel electrophoresis to measure the effective charge neutralization of DNA by counterions of different structure and valence, including Na+, Mg2+, Co(NH3), and sperinidine3+, which competed for binding with an excess of Tris acetate buffer. Linear DNA molecules ranged in size from 1 to 5 kilobases, and supercoiled plasmid pUC18 was also measured. In all cases, the results were in good agreement with theoretical predict ions from counterion condensation theory for two-counterion mixtures. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
EPR and water proton relaxation rate (1/T1) studies of partially (40%) and “fully” (90%) purified preparations of membrane-bound (Na++K+) activated ATPase from sheep kidney indicate one tight binding site for Mn2+ per enzyme dimer, with a dissociation constant (KD = 0.88 μM) in agreement with the kinetically determined activator constant, identifying this Mn2+-binding site as the active site of the ATPase. Competition studies indicate that Mg2+ binds at this site with a dissociation constant of 1 mM in agreement with its activator constant. Inorganic phosphate and methylphosphonate bind to the enzyme-Mn2+ complex with similar high affinities and decrease l/T1 of water protons due t o a decrease from four to three in the number of rapidly exchanging water protons in the coordination sphere of enzyme-bound Mn2+. The relative effectiveness of Na+ and K+ in facilitating ternary complex formation with HPO and CH3PO as a function of pH indicates that Na+ induces the phosphate monoanion t o interact with enzyme-bound Mn2+, while K+ causes the phosphate dianion to interact with the enzyme-bound Mn2+. Thus protonation of an enzyme-bound phosphoryl group would convert a K+-binding site to a Na+-binding site. Dissociation constants for K+ and Na+, estimated from NMR titrations, agreed with kinetically determined activator constants of these ions consistent with binding t o the active site. Parallel 32Pi-binding studies show negligible formation (< 7%) of a covalent E–P complex under these conditions, indicating that the NMR method has detected an additional noncovalent intermediate in ion transport. Ouabain, which increases the extent of phosphorylation of the enzyme to 24% at pH 7.5 and t o 106% at pH 6.1, produced further decreases in l/T 1 of water protons. Preliminary 31P-relaxation studies of CH3PO in the presence of ATPase and Mn2+ yield an Mn to P distance (6.9 ± 0.5 Å) suggesting a second sphere enzyme-Mn-ligand-CH3PO complex. Previous kinetic studies have shown that T1+ substitutes for K+ in the activation of the enzyme but competes with Na+ at higher levels. From the paramagnetic effect of Mn2+ at the active site on the enzyme on I/T1 of 205T1 bound at the Na+ site, a Mn2+ to T1+ distance of 4.0 ± 0.1 Å is calculated, suggesting the sharing of a common ligand atom by Mn2+ and T1+ on the ATPase. Addition of P. increases this distance to 5.4 Å consistent with the insertion of P between Mn2+ and T1+. These results are consistent with a mechanism for the \documentclass{article}\pagestyle{empty}\begin{document}$ (\mathop {\rm N}\limits^{\rm i} {\rm a}^{\rm + } {\rm + K}^ +) $\end{document}-ATPase and for ion transport in which the ionization state of Pi at a single enzyme active site controls the binding and transport of Na+ and K+, and indicate that the transport site for monovalent cations is very near the catalytic site of the ATTase. Our mechanism also accounts for the order of magnitude weaker binding of Na+ compared to K+.  相似文献   

18.
In this paper it is shown that if N= \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \sum \limits_{i = 1}^{S_h} $\end{document} cihNih, where cih are some non-negative integer numbers and Nih are such incidence matrices that Ah = \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \sum \limits_{i = 1}^{S_h} $\end{document} i Nih is a balanced matrix defined by SHAH (1959), for h = 1, 2,…, p, then a block design with an incidence matrix Ñ = [N, N,…,N] is an equi-replicated balanced block design. Here the balance of a block design is defined in terms of the matrix M0 introduced by CALI?SKI (1971).  相似文献   

19.
Summary The electrically excitable salivary cells of the giant Amazon leech, Haementeria, display a time-dependent inward rectification. Under voltage clamp, hyperpolarizing steps to membrane potentials negative to about –70 mV were associated with the activation of a slow inward current (I h) which showed no inactivation with time. The time course of activation of I hwas described by a single-exponential function and was strongly voltage dependent. The activation curve ofhranged from –72 to –118 mV, with half-activation occurring at –100 mV. Ion-substitution experiments indicated that I his carried by both Na+ and K+ ions. 5-Hydroxytryptamine (5-HT) increased the amplitude of I hand its rale of activation. It also produced a positive shift of the activation curve of the conductance underlying I h Ghwithout altering the slope factor, thus indicating that the voltage dependence of I hwas modulated by 5-HT. Cs+ blocked both I hand the 5-HT-polentiated current in a voltage-independent manner, whereas Ba2+ had little effect. It is concluded that 5-HT increases I hby modulating the inwardly rectifying Na+-K+ channels in the salivary cells. The effect of 5-HT may be mediated by an increase in adenylate cyclase activity since I hwas increased by 8-bromocyclic AMP and by the phosphodiesterase inhibitor, 3-isobutyl-l-methylxanthine. In contrast, I hwas reduced by 8-bromo-cyclic GMPand by zaprinast (an inhibitor of cyclic GMP-scnsitive phosphodieslerase). Cyclic GMP itself also reduced I h, and the effect was specific to the 3,5 form; 2,3-cyclic GMP was inactive. The results suggest that the inward-rectifier channel may be modulated in opposite directions by cyclic AMP and cyclic GMPThis work was supported by a grant from the Science and Engineering Research Council (no. GR/F/17087). We are grateful to the SmithKline (1982) Foundation for provision of a pulse generator  相似文献   

20.
Equilibrium unfolding (folding) studies reveal that the autoregulatory RNA pseudoknots derived from the bacteriophage T2 and T4 gene 32 mRNAs exhibit significant stabilization by increasing concentrations of divalent metal ions in solution. In this report, the apparent affinities of exchange inert trivalent Co(NH3) have been determined, relative to divalent Mg2+, for the folded, partially folded (Kf), and fully unfolded (Ku) conformations of these molecules. A general nonspecific, delocalized ion binding model was developed and applied to the analysis of the metal ion concentration dependence of individual two‐state unfolding transitions. Trivalent Co(NH3) was found to associate with the fully folded and partially unfolded pseudoknotted forms of these RNAs with a Kf of 5–8 × 104 M−1 in a background of 0.10 M K+, or 3‐ to 5‐fold larger than the Kf obtained for two model RNA hairpins and hairpin unfolding intermediates, and ≈ 40–50‐fold larger than Kf for Mg2+. The magnitude of Kf was found to be strongly dependent on the monovalent salt concentration in a manner qualitatively consistent with polyelectrolyte theory, with Kf reaching 1.2 × 105 M−1 in 50 mM K+. Two RNA hairpins were found to have affinities for Co(NH3) and Ru(NH3) of 1–2 ×104 M−1, or ≈ 15‐fold larger than the Kf of ∼ 1000 M−1 observed for Mg2+. Additionally, the Ku of 4,800 M−1 for the trivalent ligands is ≈ 8‐fold larger than the Ku of 600 M−1 observed for Mg2+. These findings suggest that the T2 and T4 gene 32 mRNA pseudoknots possess a site(s) for Mg2+ and Co(NH3) binding of significantly higher affinity than a “duplexlike” delocalized ion binding site that is strongly linked to the thermodynamic stability of these molecules. Imino proton perturbation nmr spectroscopy suggests that this site(s) lies near the base of the pseudoknot stem S2, near a patch of high negative electrostatic potential associated with the region where the single loop L1 adenosine crosses the major groove of stem S2. © 1999 John Wiley & Sons, Inc. Biopoly 50: 443–458, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号