首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to further investigate the connection between transport and growth control, 3T3 cells, SV40 transformed 3T3 cells (SV101), and three revertant cell lines derived from SV101 which have regained certain manifestations of growth control were used. Transport rates of 2-amino-isobutyric acid and 3-O-methyl-D-glucose were measured in sparse, confluent, serum-starved, and serum-stimulated cultures. As shown before, cessation of 3T3 cell growth in G0 under conditions of confluence or serum deprivation was associated with reduced rates of transport for both compounds, whereas the density and serum dependence of growth and transport was largely eliminated in SV101. The density revertant F1SV101, which has regained density regulation of growth similar to 3T3 cells, has also regained density regulation of transport. Neither growth nor transport were serum dependent. The serum revertants AgammaSV7 and LsSV6 have regained both density and serum regulation of growth, but not according to the original mechanism of 3T3 cells of entry into a Go state. Transport was high under conditions of confluence or serum deprivation. Thus for these cells rates of transport were not reduced simply as a consequences of slower cell growth nor were low transport rates responsible for growth arrest. The data are consistent with the possibility that growth arrest specifically in the G0 state could shut off a number of cellular activities, including transport.  相似文献   

2.
Ether-linked lipids were analyzed in Balb/c3T3, SV3T3 and Concanavalin A-selected SV3T3 revertant cells. The three cell lines were found to contain significant quantities of alk-1-enyl- and alkyl-linked phosphatidylethanolamine (PE) and phosphatidylcholine (PC) and small amounts of alkyldiacylglycerols. Compared to 3T3 cells, SV3T3 cells contain a higher amount of alk-1-enyl-linked PC, while in SV3T3 revertant cells the concentrations of the various ether lipids are similar to those of 3T3 cells. The major difference in the composition of ether groups of SV3T3 cells, compared to 3T3 cells, is an increase of 18:0 accompanied by a decrease of 18:1 in the alk-1-enyl-linked PE and PC. Alk-1-enyl-linked PC of SV3T3 revertant cells also shows an increase of 18:0, while the decrease of 18:1 was not statistically significant.  相似文献   

3.
A 35SO4-labeling/chromatography technique has been developed which facilitates quantitation of sulfated glycosaminoglycan (GAG) synthesis in mammalian cell cultures. The technique has been used to compare sulfated GAG biosynthesis, degradation, and turnover in three related cell lines with differing degrees of density-dependent inhibition of growth in vitro (Balb/c 3T3, SV3T3, and SV3T3 revertant cells). Viral transformation of Balb 3T3 cells is accompanied by a 2-5-fold decrease in cell associated sulfated GAG. SV3T3 revertant cells, which show partial reversion to low saturation density in vitro, show a 2.5-8-fold increase in cell-associated sulfated GAG compared to the parental SV3T3 cells from which they were selected. In addition, the distribution of 35SO4 and [3H]glucosamine among the different GAG species produced by SV3T3 revertant cells reverts so that it is similar to the distribution characteristic of untransformed 3T3 cells rather than SV3T3 cells. Mild trypsin treatment of 35SO4-labeled cells removed 68-84% of the cellular sulfated GAG, suggesting that at least this proportion of the total cellular sulfated GAG was located at the cell periphery. Removal of 35SO4-labeled cells from the Petri dish with a Ca2+ selective chelating agent revealed a fraction of the sulfated GAG that remained tightly bound to the Petri dish. A higher proportion of the total cell-associated sulfated GAG remained attached to the Petri dish in cultures of untransformed and revertant cells compared to that present in cultures of transformed cells. A role for sulfated GAG in density-dependent growth inhibition of fibroblast cultures is proposed and discussed in the light of the data obtained.  相似文献   

4.
5.
6.
The structural analysis of neutral glycolipids and gangliosides of the SV40 transformed Balb/c3T3 cells (SV3T3 cells) and concanavalin A-selected SV3T3 revertant cells, both compared with untransformed Balb/c3T3 cells, has shown: (i) a content of neutral glycolipids in revertant cells near to that found in the untransformed parental cells; (ii) a similar decrease of the higher gangliosides in transformed and revertant cells; (iii) a content of ganglioside GM3 in revertant cells much higher than that found in both SV3T3 and untransformed Balb/3T3 cells. The possible role of ganglioside GM3 in growth control is discussed.  相似文献   

7.
The lipid composition of Balb/c3T3, SV3T3, and the concanavalin A-selected SV3T3 revertant cells has been analyzed at the whole cell and plasma membrane levels. In comparison to untransformed 3T3 whole cells, SV3T3 cells showed an unchanged content of triacylglycerols, free fatty acids, and glycerylether diesters but a lower concentration of total phospholipids, while no significant difference was found in the phospholipid composition. Whole SV3T3 revertant cells exhibited a lipid composition similar to that in untransformed 3T3 cells with the exception of a higher proportion of sphingomyelin. Analysis of isolated plasma membranes did not reveal any significant differences in the cholesterol to phospholipid molar ratio between 3T3 and SV3T3 or SV3T3 revertant cells. The major changes in the acyl chain pattern SV3T3 compared with whole 3T3 cells consisted of an increase of oleic and palmitoleic acids coupled with a decrease of C20 and C22 polyunsaturated acids in phosphatidylethanolamine and phosphatidylcholine; an increase of oleic acid was also evident in SV3T3 phosphatidylinositol plus phosphatidylserine. An increase of palmitoleic and oleic acids together with a decrease of arachidonic acid was also found in phosphatidylethanolamine of SV3T3 plasma membranes; the only change in SV3T3 plasma membrane phosphatidylcholine was an increase of oleic acid. An increase of monoenoic acids together with a decrease of arachidonic acid was also found in phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol plus phosphatidylserine of SV3T3 revertant cells at the level of both whole cells and plasma membranes.  相似文献   

8.
The effects of growth in media supplemented with lipid-depleted fetal calf serum (LDS-media) on morphology, saturation density, and lipid composition were studied in Balb/c3T3, SV3T3, and Concanavalin A selected SV3T3 revertant cells (SV3T3 Rev cells). Cells grown in media containing complete fetal calf serum (FCS-medium) or reconstituted FCS (RS-medium) were used as controls. Growth in LDS-media reduced saturation densities of both SV3T3 and SV3T3 Rev cells while it affected only slightly the saturation density of normal parental cells. Similar inhibitory effects on growth were also induced by exposure of RS-medium. Growth in LDS-medium did not change the typical morphology of the three cell lines. 3T3, SV3T3, and SV3T3 Rev cells grown in LDS-medium showed an accumulation of triacylglycerols and free fatty acids together with a reduction of free cholesterol. All these changes were also present, however, in cells grown in these changes were also present, however, in cells grown in RS-Medium. Growth in LDS-medium induced an increase of 16:1 and 18:1, a decrease of 20:4, and an accumulation of 20:3 (n-9) in phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol + phosphatidylserine of 3T3 cells. By contrast, only a slight accumulation of 20:3 (n-9) accompanied by a moderate increase of monoenoic acids was found in the phospholipids of SV3T3 cells grown in LDS-medium. SV3T3 Rev cells grown in LDS-medium showed changes in phospholipid fatty acids composition similar to those found in SV3T3 cells grown under the same conditions.  相似文献   

9.
The kinetics of Ca++ uptake have been evaluated in 3T3 and SV40-3T3 mouse cells. The data reveal at least two exchangeable cellular compartments in the 3T3 and SV40-3T3 cell over a 50-min exposure to 45Ca++. A rapidly exchanging compartment may represent surface-membrane-localized Ca++ whereas a more slowly exchanging compartment is presumably intracellular. The transition of the 3T3 cell from exponential growth (at 3 day's incubation) to quiescence (at 7 days) is characterized by a 7.5-fold increase in the size of the fast component. Quiescence of the 3T3 cell is also characterized by a 3.2-fold increase in the unidirectional Ca++ influx into the slowly exchanging compartment and a 3.6-fold increase in its size. The increase in size of the slow compartment at quiescence may result from a redistribution of intracellular Ca++ to a more readily exchangeable compartment, possibly reflecting a release of previously bound Ca++. In contrast, no significant change in any of these parameters is observed in the proliferatively active SV40-3T3 cells after corresponding period of incubation, even though these cells attained higher growth densities and underwent postconfluence.  相似文献   

10.
The rate of transport of phenylalanine and leucine, pertinent amino acids of System L, has been measured in SV40 3T3 cells as a function of the presence of Na+ ions during the reloading phase that precedes the influx determination. The presence of Na+ ions during the reloading phase resulted in an increase of the subsequent substrate influx through System L. This effect was related to the intracellular Na+ level and was found to be independent by the presence of a chemical sodium gradient outside-inside during influx determination; furthermore, this effect could not be ascribed to a difference between control and Na+-treated cells in the internal levels of those amino acids that participate in the exchange phenomena of transport System L. The transport of phenylalanine appeared to have the ability to accept Li+ for Na+ substitution in the 'trans' position. The presence of Na+ ions in the 'trans' position was not required to optimize the transport of System A-reactive substrates, whose influxes are dependent on the presence of the cation in 'cis' position. Analysis of the relationship between influx and substrate concentration indicated that the Na+-dependent increase of substrate influx was associated with an enlarged capacity of the high-affinity component of transport System L.  相似文献   

11.
Summary. In 3T3 cells temperatures higher than physiological stimulated amino acid transport activity in a dose-dependent manner up to 44°C. However, the temperature increase did not induce widespread transport increase of all other nutrients tested. The activities of both amino acid transport systems A and ASC were enhanced within a few minutes following cell exposure to increased temperature. The maintenance of this effect required continuous exposure of the cells to hyperthermia. Kinetic analysis indicated that the stimulation of the activity of transport System A occurred through a mechanism affecting Vmax rather than Km. The continuous presence of cycloheximide did not prevent the transport changes induced by hyperthermia. These results suggest that the increased amino acid uptake reflects an activation or relocation of existing amino acid transport proteins. During the hyperthermic treatment, the content of ninhydrin-positive substances (NPS), mostly amino acids, increased within the cells and the accumulation of these compatible osmolytes was parallelled by an increase in cell volume. The withdrawal of amino acids from the culture medium immediately before and during the shock phase counteracted the increase and reduced the NPS content but did not prevent the increase in amino acid transport, the cell swelling and the induction of the heat shock response. Received June 30, 1999 Accepted July 27, 2000  相似文献   

12.
13.
Treatment of the SV40 transformed 3T3 cell line SV101 with colchicine permits the isolation of polyploid revertant sublines Which have lower saturation densities than SV101. These low saturation density lines have also reverted to a high serum requirement for growth, and are unable to form colonies in methocel. Normal SV40 has been recovered from these revertants. 3T3 cells are more resistant to colchicine than SV3T3 cells at all cell densities. Colchicine revertants do not display a 3T3-like resistance to colchicine at low density, but do survive colchicine at confluent cell densities, presumably due to their increased contact inhibition.  相似文献   

14.
15.
M Ernst  G Adam 《Cytobiologie》1979,18(3):450-459
Intracellular contents of potassium and of sodium are determined for 3T3 and SV 40-3T3 cells in dependence of growth density. In parallel, total cell volume and volume of intracellular water is determined for these cells suspended in physiological buffer. Intracellular potassium concentration thus evaluated for suspended 3T3 cells exhibits a sharp decrease at cellular growth densities which lead to density dependent inhibition of cell proliferation. In the case of SV 40-3T3 cells, this drop of potassium concentration with increasing cellular growth density is not observed, which correlates well with the absence of cell density dependent inhibition of cell growth in the transformed cell line. These results support the notion that processes of stimulation of quiescent 3T3 cells or of cell density dependent inhibition of their proliferation are mediated by processes including changes of potassium transport characteristics leading to increase or decrease respectively of their intracellular potassium concentration. Furthermore, these and other results suggest, that a difference between normal and transformed cells most relevant to their different proliferation behaviour might reside in different transport characteristics for potassium of the plasma membranes of these cells.  相似文献   

16.
Transport of amino acids into 3T3 and SV3T3 (SV40 virus-transformed 3T3) cells was measured on glass cover slips. The 3T3 and SV3T3 cells contain both A (alanine preferring) and L (leucine preferring) systems for neutral amino acid transport. Initial rates of uptake of amino acids are about twofold higher in SV3T3 than in 3T3 cells. Other parameters measured, however, do not indicate marked differences in the transport of amino acids by the two cell types. L-system amino acids, such as leucine, are subject to trans-stimulation in both cell lines, whereas A-system amino acids, such as alanine and glycine, are not. Leucine was transported to higher levels in confluent cells than in nonconfluent cells. Glycine, however, shows distinctly less transport activity as the cells become confluent. Ehrlich ascites cell plasma membranes were prepared and assayed for amino acid-binding activity. Leucine-binding activity was detected by equilibrium dialysis in Triton X-100-treated membrane preparations.  相似文献   

17.
An aging process has been detected in stationary 3T3 cell cultures, especially in the presence of plasma-derived serum (PDS) from adult bulls. It leads to irreversible conversion of an increasing percentage of initially responsive cells of a stationary population into cells unresponsive to growth stimulation by newborn calf serum (NBCS) or reseeding at low cell density in the presence of NBCS. These unresponsive cells are viable in the sense that, following trypsinization, they reattach and spread on a new culture plate and can be maintained for many days. The conversion process is accelerated by increasing PDS concentration. It is antagonized by NBCS. It is accompanied by enhancement of growth-inhibiting interactions exerted by stationary 3T3 cell populations on SV 40–3T3 cells.  相似文献   

18.
SV101, the SV40-transformed subline of the mouse fibroblast line 3T3, is both serum- and density transformed, since it grows in both 1% and 10% calf serum, and grows beyond confluence in 10% calf serum. Negative selection at low cell density in 1% calf serum or in 10% agamma-depleted serum permits direct recovery of serum-revertant sublines of SV101. These sublines are unable to grow in 1% calf serum. Although negative selection at high cell density in 10% calf serum is known to permit recovery of density-revertant sublines of SV101, most density-revertants are not serum-revertant. However, all serum-revertants isolated so far are density-revertant as well.  相似文献   

19.
Comparative two-dimensional gel electrophoretic studies were performed on mitochondrial proteins in nontransformed mouse 3T3 cells and in SV40-transformed 3T3 cells, SV-T2. Two polypeptides, of 58 and 40 kDa, were present in increased amounts in SV40-transformed cells. These polypeptides were demonstrated to be nuclear-coded mitochondrial proteins by their absence in mitochondrial preparations, when labeling was performed in the presence of a mitochondrial-specific inhibitor, Rhodamine 6G. Temperature-sensitive mutants for transformation were derived from 3T3 cells by transfection with cloned SV40 DNA containing the ts A58 mutation. Increased amounts of the 58 kDa protein were apparent in these cells at the permissive temperature (33 degrees C) compared to the restrictive temperature (39.5 degrees C).  相似文献   

20.
1. The occurrence and characterization of acidic amino acid transport in the plasma membrane of a variety of cells and tissues of a number of organisms is reviewed. 2. Several cell types, especially in brain, possess both high- and low-affinity transport systems for acidic amino acids. 3. High-affinity systems in brain may function to remove neurotransmitter amino acid from the extracellular environment. 4. Many cell systems for acidic amino acid transport are energized by an inwardly directed Na+ gradient. Moreover, certain cell types, such as rat brain neurons, human placental trophoblast and rabbit and rat kidney cortex epithelium, respond to an outwardly directed K+ gradient as an additional source of energization. This simultaneous action may account for the high accumulation ratios seen with acidic amino acids. 5. Rabbit kidney has been found to have a glutamate-H+ co-transport system which is subject to stimulation by protons in the medium. 6. Acidic amino acid transport in rat brain neurons occurs with a stoichiometric coupling of 1 mol of amino acid to 2 mol of Na+. For rabbit intestine, one Na+ is predicted to migrate for each mol of amino acid. 7. Uptake in rat kidney cortex and in high-K+ dog erythrocytes is electrogenic. However, uptake in rabbit and newt kidney and in rat and rabbit intestine is electroneutral. 8. Na+-independent acidic amino acid transport systems have been described in the mouse lymphocyte, the human fibroblast, the mouse Ehrlich cell and in rat hepatoma cells. 9. In a number of cell systems, D-acidic amino acids have substantial affinity for transport; D-glutamate, in a number of systems, however, appears to have little reactivity. 10. Acidic amino acid transport in some cell systems appears to occur via the "classical" routes (Christensen, Adv. Enzymol. Relat. Areas Mol. Biol. 49, 41-101, 1979). For example, uptake in the Ehrlich cell is partitioned between the Na+-dependent A system (which transports a wide spectrum of neutral amino acids), the Na+-dependent ASC system (which transports alanine, serine, threonine, homoserine, etc.), and the Na+-independent L system (which shows reactivity centering around neutral amino acids such as leucine and phenylalanine). Also, a minor component of uptake in mouse lymphocytes occurs by a route resembling the A system. 11. Human fibroblasts possess a Na+-independent adaptive transport system for cystine and glutamate that is enhanced in activity by cystine starvation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号