首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sieve elements in monocotyledons possess unique plastids. Structuralevidence indicates that when mature sieve-tube members are mechanicallyperturbed the plastids release proteinaceous, quasi –crystalline inclusions. The inclusions become lodged in sieve-platepores and appear to seal portions of phloem sieve tubes.  相似文献   

2.
The differentiation and obliteration of protophloem sieve elementsin leaves of the grass Aegilops comosa var. thessalica havebeen studied by electron microscopy. These elements differentiatesimilarly to metaphloem sieve elements of the same plant andother monocotyledons. Plasmalemma, smooth endoplasmic reticulum(ER), mitochondria, P-type plastids and sometimes nuclear remnantsconstitute the protoplasmic components at maturity, all areperipherally distributed. The differentiation of end walls intosieve plates and the presence of sieve areas on the lateralwalls indicate that protophloem sieve elements are componentsof sieve-tube. They may be functional for a brief period butsoon after their maturation they are compressed and finallyobliterated by the stretching of actively-growing surroundingcells. The protoplasmic components of mature elements degenerateand are destroyed during obliteration of the sieve elements. Aegilops comosa var. thessalica, protophloem, sieve elements, differentiation, ultrastructure  相似文献   

3.
Karl J. Oparka 《Planta》1980,150(3):249-254
Polysomes in sieve elements of rice (Oryza sativa L.) were studied with the electron microscope. The polysomes were found on the rough endoplasmic reticulum (ER) present in immature sieve elements and also on the cisternae of aggregated ER in the parietal layer of mature, enucleate sieve elements. In the immature sieve elements the ER cisternae existed as narrow profiles while in the mature sieve elements the ER cisternae were considerably dilated and contained a fibrillar material and, occasionally, electron-opaque inclusions. In addition to the aggregated ER, single profiles of ER were found applied to the lateral walls and also the sieve plates. These cisternae also bore ribosomes and were separated from the plasmalemma by a narrow, dense space. In the mature sieve elements much of the surface of the ER membranes was covered with polysomes. The dimensions of the polysomes are described and the possibility that they contribute to the formation of the fibrillar material in the intracisternal space is discussed.Abbreviations ER endoplasmic reticulum  相似文献   

4.
The formation of P-protein in the protophloem of 9- to 14-day-old adventitious roots of Salix viminalis was studied. In immature sieve elements a finely granular material was present. This was considered to be nascent P-protein. Small aggregations of tubular P-protein were observed 17 cells from the first "cleared" sieve element. In older cells the bodies were up to 7 μm long. Nondispersed and disaggregating P-protein bodies were present in mature sieve elements. P-protein bodies were also observed in parenchyma cells adjoining mature sieve elements. In addition, inclusion bodies of unknown origin are described. They had a granular content and were most often found in mature sieve elements.  相似文献   

5.
Summary The minor veins ofCucurbita pepo leaves were examined as part of a continuing study of leaf development and phloem transport in this species. The minor veins are bicollateral along their entire length. Mature sieve elements are enucleate and lack ribosomes. There is no tonoplast. The sieve elements, which are joined to each other by sieve plates, contain mitochondria, plastids and endoplasmic reticulum as well as fibrillar and tubular (190–195 diameter) P-protein. Fibrillar P-protein is dispersed in mature abaxial sieve elements but remains aggregated as discrete bodies in mature adaxial sieve elements. In both abaxial and adaxial mature sieve elements tubular P-protein remains undispersed. Sieve pores in abaxial sieve elements are narrow, lined with callose and are filled with P-protein. In adaxial sieve elements they are wide, contain little callose and are unobstructed. The intermediary cells (companion cells) of the abaxial phloem are large and dwarf the diminutive sieve elements. Intermediary cells are densely filled with ribosomes and contain numerous small vacuoles and many mitochondria which lie close to the plasmalemma. An unusually large number of plasmodesmata traverse the common wall between intermediary cells and bundle sheath cells suggesting that the pathway for the transport of photosynthate from the mesophyll to the sieve elements is at least partially symplastic. Adaxial companion cells are of approximately the same diameter as the adaxial sieve elements. They are densely packed with ribosomes and have a large central vacuole. They are not conspicuously connected by plasmodesmata to the bundle sheath.  相似文献   

6.
A light and electron microscope investigation was conducted on phloem in the aerial stem of Epifagus virginiana (L.) Bart. Tissue was processed at field collection sites in an effort to overcome problems resulting from manipulation. At variance with earlier accounts, Epifagus phloem consists of sieve elements, companion cells, phloem parenchyma cells, and primary phloem fibers. The sieve elements possess simple sieve plates and the phloem is arranged in a collateral type of vascular bundle. In addition, this constitutes the first study on phloem ultrastructure in the aerial stems of a holoparasitic dicotyledon, an entire plant which could be viewed as an “ideal sink.” Epifagus phloem possesses unoccluded sieve plate pores in mature sieve elements and a total lack of P-protein in sieve elements at all stages of development. Mature sieve elements lack nuclei. Plastids were rarely observed in mature sieve elements. Vacuoles with intact tonoplasts were encountered in some mature sieve elements. Otherwise, the ultrastructural features of sieve elements appear to differ little from those described by investigators of non-parasitic species.  相似文献   

7.
At maturity the sieve elements of Ulmus americana L. contain a parietal network of very fine strands of slime which is continuous from one sieve element to the next through the sieve-plate pores. Upon injury this parietal network, which is derived from the slime bodies of immature sieve elements, sometimes becomes distorted into longitudinally oriented strands. Some of these strands frequently extend the length of the cells and often are continuous from one sieve element to the next through the sieve-plate pores. At times past such strands have erroneously been interpreted as normal constituents of the mature sieve-element protoplast. Many mature sieve elements of U. americana contain nuclei, which apparently persist for the life of the sieve elements. In addition, some evidence has been found in mature sieve elements for the presence of a membrane which delimits the parietal layer of cytoplasm, including its network of slime strands, from the vacuolar region of the cell.  相似文献   

8.
When special precautions were taken to permit killing and fixation of sieve elements before they were cut, sieve pores were found to be open. Companion cells were shown to be highly resistant to freezing injury and less plasmolyzable than phloem parenchyma. Plasmodesmata connected parenchyma to parenchyma, parenchyma to companion cells, and companion cells to sieve elements. Their general absence between parenchyma cells and sieve elements points to a specific role of companion cells in sieve tube functioning. EM studies of these cells revealed an ER system which connects the central core of the plasmodesma to the sieve tube. This system may be responsible for active sucrose transport. Callose was always present on sieve plates of mature functioning sieve elements even with the most rapid killing and fixing possible. Extra callose promoted by heating (45 C) an intact stem segment was found to constrict the sieve pores almost completely. Constriction of plasmodesmata in lateral sieve areas also was evident. Fine structure analysis of the blocking mechanism is in accord with evidence obtained by tracer studies.  相似文献   

9.
Seasonal collections were made of rhizomes of Polygonatum canaliculatum and Typha latifolia and of aerial stems of Smilax hispida. Many metaphloem sieve elements in all three species remain functional for 2 or more years, or for the life of the plant parts in which they occur. Although the protoplasts of mature sieve elements remain similar in appearance from one time of year to the next, the amount of callose associated with the sieve plates and lateral sieve areas of such cells apparently varies with the seasons, being heavier in late fall and winter and lighter in late spring and summer. At maturity the metaphloem sieve elements contain strands derived from the slime bodies of immature cells. It is suggested that in mature sieve elements the slime strands normally occur as a network along the wall. Many mature sieve elements of S. hispida contained normal-appearing nuclei.  相似文献   

10.
The study of plants adapted to an extreme environment with a high concentration of iron such as Río Tinto allowed the study of important elements for the development and control of plant growth including their localization, management, and storage. The absorption, transport, and accumulation of iron were studied in different species of dicotyledons (Sarcocornia pruinosa, Salicornia patula, Arthrocnemum macrostachyum, and Halogeton sativus of the Chenopodiaceae family) and monocotyledons (Imperata cylindrica, Cynodon dactylon, and Panicum repens from the Poaceae family), all obtained from the Río Tinto banks in different sample collection campaigns. The results clearly show that phytoferritin is not observed in the chloroplast of monocotyledons, an important difference from what is observed in dicotyledons. The presence of plastids with a high concentration of iron in the sieve tubes of monocotyledons strongly suggests their possible role in the transport and accumulation of iron in these plants.  相似文献   

11.
WALSH  M. A 《Annals of botany》1980,46(5):557-565
Decortication of embryonic roots of 4- to 5-day-old Zea seedlingsand subsequent chemical fixation permitted comparison of cutand uncut developing sieve elements In a decorticated root wheresieve tubes are not severed, metaphloem sieve elements in latestates of development and some mature sieve elements exhibita highly vacuolate condition When roots are cut or diced inthe course of fixation intact vacuoles are not observed in latestages of sieve-element ontogeny The degree of callose formationat sites of developing sieve-plate pores and in the pores ofmature sieve elements varies greatly with both decorticationand non-decortication treatments Nuclei were not observed insieve elements at the electron microscope level, but they wereseen at the light microscope level in serial sections of sieveelements in the late to mature developmental stages representedAlthough the occurrence and distribution of plastids, mitochondria,endoplasmic reticulum, dictyosomes and nbosomes also vanes insieve elements of decorticated roots, disruption or surgingof sieve-element contents is greater for sieve tubes that aresevered during fixation treatment A discussion is presentedrelating effects of trauma on observed developmental stagesand sieve-element structure Zea mays L, maize, corn, phloem, Sieve elements, tonoplast, ultrastructure  相似文献   

12.
In minor veins of leaves of Beta vulgaris L. (sugar beet) yellows virus particles were found both in parenchyma cells and in mature sieve elements. In parenchyma cells the particles were usually confined to the cytoplasm, that is, they were absent from the vacuoles. In the sieve elements, which at maturity have no vacuoles, the particles were scattered throughout the cell. In dense aggregations the particles tended to assume an orderly arrangement in both parenchyma cells and sieve elements. Most of the sieve elements containing virus particles had mitochondria, plastids, endoplasmic reticulum, and plasma membrane normal for mature sieve elements. Some sieve elements, however, showed evidence of degeneration. Virus particles were present also in the pores of the sieve plates, the plasmodesmata connecting the sieve elements with parenchyma cells, and the plasmodesmata between parenchyma cells. The distribution of the virus particles in the phloem of Beta is compatible with the concept that plant viruses move through the phloem in the sieve tubes and that this movement is a passive transport by mass flow. The observations also indicate that the beet yellows virus moves from cell to cell and in the sieve tube in the form of complete particles, and that this movement may occur through sieve-plate pores in the sieve tube and through plasmodesmata elsewhere.  相似文献   

13.
Corm tissue of Isoetes muricata Dur. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Very young secondary sieve elements can be distinguished from contiguous cambial cells by their distinctive plastids and by the presence of crystalline and/or fibrillar proteinaceous material in dilated cisternae of rough endoplasmic reticulum (ER). At maturity, the sieve elements are lined by the plasmalemma and a parietal, anastomosing network of smooth ER. Degenerate nuclei persist in all mature sieve elements. In addition, mature sieve elments contain plastids and mitochondria. Sieve-area pores are present in all walls. The lateral meristem of I. muricata consists of 2–3 layers of cells year-round. Judging from numerous collections made between October 1972 and July 1975, new sieve-element differentiation precedes cambial activity by about a month. Early in May, 1–2 cells immediately adjacent to already mature sieve elements differentiate directly into sieve elements without prior division. In early June, at about the time sieve-element differentiation is completed, cambial division begins. Division is sporadic, not uniform throughout the meristem. Dormancy callose accumulates in the secondary sieve elements in late October, and is removed in early May, at about the same time new sieve-element differentiation begins. Cells of the dormant cambium are characterized by the presence of numerous small vacuoles and large quantities of storage materials, including lipid droplets, starch grains, and tannin. By contrast, active cambial cells contain few large vacuoles with little or no tannin, and they have little storage material.  相似文献   

14.
An ontogenetic study of the sieve element protoplast of Nicotiana tabacum L. by light and electron microscopy has shown that the P-protein component (slime) arises as small groups of tubules in the cytoplasm. These subsequently enlarge to form comparatively large compact masses of 231 ± 2.5 (SE)A (n = 121) tubules, the P-protein bodies. During subsequent differentiation of the sieve element, the P-protein body disaggregates and the tubules become dispersed throughout the cell. This disaggregation occurs at about the same stage of differentiation of the sieve elements as the breakdown of the tonoplast and nucleus. Later, the tubules of P-protein are reorganized into smaller striated 149 ± 4.5 (SE)A (n = 43) fibrils which are characteristic of the mature sieve elements. The tubular P-protein component has been designated P1-protein and the striated fibrillar component P2-protein. In fixed material, the sieve-plate pores of mature sieve elements are filled with proteinaceous material which frays out into the cytoplasm as striated fibrils of P2-protein. Our observations are compatible with the view that the contents of contiguous mature sieve elements, including the P-protein, are continuous through the sieve-plate pores and that fixing solutions denature the proteins in the pores. They are converted into the electron-opaque material filling the pores.  相似文献   

15.
Leaf tissue of Isoetes muricata Dur. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. The very young sieve elements can be distinguished from contiguous parenchyma cells by their distinctive plastids and the presence of crystalline and fibrillar proteinaceous material in dilated cisternae of the rough ER. During differentiation, the portions of ER enclosing this proteinaceous substance become smooth surfaced and migrate to the cell wall. Along the way they apparently form multivesicular bodies which then fuse with the plasmalemma, discharging their contents to the outside. At maturity, the sieve element contains an elongate nucleus, which consists of dense chromatin material, and remnants of the nuclear envelope. In addition, the mature sieve element is lined by a plasmalemma and a parietal, anastomosing network of smooth ER. Both plastids and mitochondria are present. P-protein is lacking at all stages of development. Tonoplasts are. not discernible in mature sieve elements. The end walls of mature sieve elements contain either plasmodesmata or sieve pores or both, but only plasmodesmata occur in the lateral walls.  相似文献   

16.
The sink effect of cytokinin is manifested as a decrease in source capacity and the induction of sink activity in the phytohormone-treated region of a mature excised leaf. In order to find out whether this effect was due to the direct action of cytokinin on the phloem structure, two types of phloem terminals were examined. In pumpkin (Cucurbita pepo L.) leaves, the phloem terminals are open; i.e., they are linked to mesophyll by numerous symplastic connections, which are located in narrow areas called plasmodesmal pit fields. In broad bean (Vicia faba L.) leaves, the phloem terminals belong to the closed type and have no symplastic links with mesophyll. The electron microscopic study of terminal phloem did not reveal any structural changes in the companion cells, which could account for the suppression of assimilate export. The treatment of leaves with cytokinin neither disturbed the structure of plasmodesmal pit fields in pumpkin leaves nor eliminated the wall protuberances (the ingrowths promoting phloem loading) in bean leaves. No evidence was obtained that the cytokinin-induced import of assimilates in mature leaves is caused by the recovery of meristematic activity, i.e., by either formation of new phloem terminals having immature sieve elements capable of unloading or by the development of new sieve elements within the existing veins. Cytokinin did not induce de novo formation of phloem elements. Structural characteristics of the leaf phloem, such as the number of branching orders in the venation pattern, the number of vein endings per areole, the number of areoles per leaf, the area of one areole, and the number of sieve elements per bundle remained unaltered. It is concluded that the sink effect of cytokinin in excised leaves cannot be determined by alteration of the phloem structure.  相似文献   

17.
The changes in structure of the endoplasmic reticulum (ER) andits associations with other cell components have been studiedin differentiating protophloem sieve elements of root tips ofTriticum aestivum. In the young sieve elements single ER cisternaebearing ribosomes are dispersed in the cytoplasm. As differentiationprogresses ER increases in amount while a small proportion ofit aggregates into stacks or becomes associated with the nuclearenvelope and the mitochondria. These modifications occur inthe last two sieve elements containing ribosomes and coincidewith most dramatic changes in the degenerating nucleus. Stacksconsist of relatively few ER cisternae and may be encounteredfree in the cytoplasm or applied to the nuclear envelope. Electron-densematerial accumulates between the contiguous cisternae of thestacks. ER-attached ribosomes persist even in nearly maturesieve elements, but their pattern of arrangement becomes changed.The structural evidence indicates that only a few highly degradedER elements are retained in fully mature sieve elements. Triticum aestivum, root protophloem, sieve elements, endoplasmic reticulum, differentiation  相似文献   

18.
Functional sieve elements are present year-round in the secondary phloem of the trunk of Acer negundo L., the box elder tree. Judging from numerous collections made between May, 1962, and May, 1964, the seasonal cycle of phloem development is as follows: cambial activity and new phloem differentiation begin in late March or early April; xylem differentiation begins about a month later and is completed in most trees in late August. At the time of cessation of cambial activity most of the relatively wide sieve elements of the current season's increment are mature. However, numerous groups of narrow, immature sieve elements and companion cells located on the outer margin of the cambial zone do not reach maturity until fall and winter. By the time of cambial reactivation in spring, most, if not all, of these narrow elements are mature. Some of the sieve elements which reach maturity either shortly after cessation of cambial activity or during dormancy become non-functional within 6 weeks after resumption of cambial activity in spring, while others remain functional until mid-August. For the phloem increment of a given year, cessation of function begins in September with the accumulation of definitive callose on the sieve plates of the first-formed sieve elements and spreads to all but the last-formed ones by the end of December.  相似文献   

19.
Summary Contrary to an earlier report, the sieve elements and companion cells of Tilia americana contain plastids. In young sieve elements and companion cells the plastids contain a moderately electronopaque matrix and internal membranes; the latter are very numerous in the plastids of the sieve elements. Plastids of mature sieve elements contain an electron-transparent matrix, apparently fewer internal membranes than the plastids of young elements, and a single starch grain each. The plastids of companion cells undergo little or no structural modification during cellular differentiation, and apparently contain no starch.This research has been supported by the National Science Foundation, grants GB-5950 and GB-8330.  相似文献   

20.
The differentiation of the protophloem in 9- to 14-day-old adventitious roots of Salix viminalis was studied. Ultrastructural observations were mainly made on longitudinal serial sections through an uninterrupted file of 32 differentiating sieve elements. The first cell in the file was located about 50 μm from the apical meristem. At an early stage the nucleus was lobed in outline, and in older cells the nucleoplasm became electron lucent. In the first or second cell from the first mature sieve element the nuclear envelope broke open. The nucleoli decreased gradually in size and disappeared finally. From the 9th cell the plastids contained starch and grew somewhat in size. ER increased in amount and began to form stacks in the 20th cell. These stacks moved to a peripheral position. Callose platelets were first observed on the transverse walls in cell 18. Flattened ER-cisternae covered the sieve pore sites. Gradually the middle lamella was dissolved and the callose aggregations formed cylinders around the pores of the sieve plate. Aggregations of tubular P-protein were present from cell 15. P-protein bodies were also present in parenchyma cells adjoining mature sieve elements. The only cell components remaining in mature sieve elements were plastids, mitochondria, stacked ER, the plasmalemma, remnants of other membranes and bodies consisting of P-protein and of an unidentified granular material. The sieve elements had no ontogenetically related companion cells. At a level where both metaphloem and metaxylem had matured the first formed protophloem sieve elements remained intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号