首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified plasma membranes of mouse EL4 lymphoma cells were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (MF1) eluted freely from the affinity column, the second (MF2) adhered specifically to Con A-Sepharose. Both membrane subfractions proved to be of plasma membrane origin, as evidenced by the following criteria. (i) The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. (ii) When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. (iii) After enzymatic radioiodination of the cells, the total content of labelled proteins was very similar in isolated plasma membranes and in both subfractions. (iv) Some plasma membrane marker enzymes exhibited nearly identical specific activities in plasma membranes, MF1 or MF2 including γ-glutamyl transpeptidase, 5′-nucleotidase and Mg2+-ATPase. Both subfractions exhibited characteristic differences. Thus the specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysophosphatidylcholine acyltransferase were several-fold enriched in MF2 compared to MF1. SDS-polyacrylamide gel electrophoresis revealed a different polypeptide composition of the two subfractions. Polypeptides of apparent molecular mass of 116, 95, 42, 39, 30 and 28 kDa were highly enriched in MF2, whereas MF1 contained another set of proteins, of apparent molecular mass of 70, 55 and 24 kDa. The phospholipid fatty acid composition of the subfractions proved to be different, as well, MF2 contained more saturated fatty acids than MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of the mouse EL4 lymphoma cells, containing a set of polypeptides, among others membrane bound enzymes, embedded in a different phospholipid milieu.  相似文献   

2.
I used sharp intracellular electrodes to record from parasol cells in the semi-isolated crayfish brain to investigate pacemaker currents. Evidence for the presence of the hyperpolarization-activated inward rectifier potassium current was obtained in about half of the parasol cells examined, where strong, prolonged hyperpolarizing currents generated a slowly-rising voltage sag, and a post-hyperpolarization rebound. The amplitudes of both the sag voltage and the depolarizing rebound were dependent upon the strength of the hyperpolarizing current. The voltage sag showed a definite threshold and was non-inactivating. The voltage sag and rebound depolarization evoked by hyperpolarization were blocked by the presence of 5–10 mM Cs2+ ions, 10 mM tetraethyl ammonium chloride, and 10 mM cobalt chloride in the bathing medium, but not by the drug ZD 7288. Cs+ ions in normal saline in some cells caused a slight increase in mean resting potential and a reduction in spontaneous burst frequency. Many of the neurons expressing the hyperpolarization-activated inward potassium current also provided evidence for the presence of the transient potassium current IA, which was inferred from experimental observations of an increased latency of post-hyperpolarization response to a depolarizing step, compared to the response latency to the depolarization alone. The latency increase was reduced in the presence of 4-aminopyridine (4-AP), a specific blocker of IA. The presence of 4-AP in normal saline also induced spontaneous bursting in parasol cells. It is conjectured that, under normal physiological conditions, these two potassium currents help to regulate burst generation in parasol cells, respectively, by helping to maintain the resting membrane potential near a threshold level for burst generation, and by regulating the rate of rise of membrane depolarizing events leading to burst generation. The presence of post-burst hyperpolarization may depend upon IA channels in parasol cells.  相似文献   

3.
Abstract— Differential and sucrose-density-gradient centrifugation techniques were used for studies on the separation of subcellular particles from rabbit brain and olfactory tissue. Comparisons were made among various fractions from the two types of tissue. These comparisons included protein concentration and enzyme activities of the individual fractions as well as their distribution in subfractions from density gradient separations. In tissue whole homogenates, the percentage of total ATPase activity as ouabain sensitive Na+-K+ ATPase activity was about 4 times greater in brain cortex (63 per cent) than in olfactory tissue (17 per cent). Cytochrome oxidase and Na+-K+ ATPase activities were used to indicate the presence and the concentration of mitochondria and of the plasma membranes. A fraction with properties similar to the mitochondria plus nerve ending fraction from brain homogenates (fraction B) was obtained from olfactory tissue. Nerve ending concentration subfractions (B2) were prepared from the B primary fractions. Plasma membrane subfractions were obtained by osmotic shock treatment of B2, In the fraction of plasma membrane from olfactory tissue (E2), 56 per cent of the total ATPase activity was Na+-K+ ATPase activity. In E2 from brain 71 per cent was Na+-K+ ATPase activity. Deoxycholate (DOC)-treated fractions containing nerve endings from brain preparations showed much greater increase in cytochrome oxidase activity than did similar fractions from olfactory tissue. DOC treatment increased the NADH cytochrome c reductase activity of all fractions and subfractions from brain, while it decreased activity in all but one fraction from olfactory tissue. DOC treatment decreased both the Mg2+ and Na+-K+ ATPase activities in both types of tissue. Electron photomicrographs of olfactory B2, B3, E2 and E3 show clear morphological differences among these subfractions. The presence of possible cilia and basal bodies on vesicles in B2 gives morphological evidence for the presence of terminal swellings in this subtraction in agreement with enzyme marker activity results.  相似文献   

4.
Fractionation of preparations of rat-liver membranes on linear sucrose gradients revealed different profiles for the binding of α1-, α2- and β-adrenergic radioligands. The peaks of binding activities of [3H]prazosin and [3H]epinephrine were clearly separated from those of [3H]yohimbine and [125I]iodocyanopindolol which appeared at lower sucrose densities. Enzyme marker activities in the sucrose subfractions indicated the presence of plasma membranes in all of the subfractions. Furthermore, the binding peaks of the various adrenergic radioligands cannot be correlated with the presence of membranes derived from microsomes, lysosomes or Golgi apparatus. Pretreatment of rat livers with concanavalin A, in order to prevent the fragmentation of the plasma membranes during isolation, resulted in the shift of the binding of [3H]yohimbine and [125I]iodocyanopindolol to sucrose-gradient subfractions of higher densities, clearly separate from fractions containing microsomes and Golgi apparatus. There was no distinct separation of the binding peaks of prazosin, yohimbine, and cyanopindolol in sucrose-gradient subfractions from concanavalin A-pretreated livers. These results are consistent with the hypothesis that α1-, α2-, and β-adrenergic binding sites are associated with plasma membranes, and are heterogeneously distributed on the rat-liver cell surface.  相似文献   

5.
A microwave-assisted extraction method has been developed for the extraction of phenolic compounds from the green alga, Caulerpa racemosa. An L18(3)5 orthogonal experimental array was designed to optimize the extraction conditions. Total phenolic content was determined by Folin–Ciocalteu method. Under the optimized conditions (microwave power, 200?W; ethanol concentration, 60%; extraction time, 40?min; extraction temperature, 50°C; solvent-to-material ratio, 40?mL?g?1), the maximum total phenolic content reached 67.89?±?3.88?mg 100?g?1 dried sample. The crude ethanolic extract was further purified by liquid–liquid partition to afford two fractions, of which the ethyl acetate-soluble fraction (EAF) exhibited the strongest antioxidant activity in the hydroxyl and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays and reducing power. EAF was further divided into four subfractions, designated as EAF1 to EAF4, by silica gel vacuum liquid chromatography. The antioxidant capacity of the subfractions was in the following order: EAF1>EAF2>EAF4>EAF3. The results of IR spectral and HPLC analysis, including the research on the correlation between antioxidant capacity and total phenolic content, suggested that phenolic compounds of medium polarity were the major contributors to the antioxidative activity of C. racemosa. The present findings might contribute to a rational basis for the use of phenolic-rich fractions and subfractions as natural antioxidants in different food/pharmaceutical products.  相似文献   

6.
When grown anaerobically at pH values above 5.0, on ultrafiltered complex media containing excess lactose, Bifidobacterium longum formed up to 140 mg 1–1 (glucose equiv.) exopolysaccharides. The highest yield was obtained when the cells were cultivated in a peptone/yeast extract medium with pH controlled by additions of NH4OH. Whatever the conditions under study, exopolysaccharides represented about 30% of the polysaccharides produced by B. longum after 48 h of culture. Crude pronase-treated exopolysaccharide preparations were adsorbed on ion-exchange chromatographic resin to yield an anionic heteropolysaccharide fraction. Two subfractions with apparent molecular masses of 1.2 MDa and 0.36 MDa respectively were subsequently recovered after gel filtration on Sepharose 4B. In both subfractions, glucose, galactose and small amounts of uronic acids and hexosamines were present in similar molar proportions, suggesting that the excreted polymers may be synthesized from the same base unit and may have a structure resulting from repeating subunits.  相似文献   

7.
The role of the inward K+ rectifier in the repetitive activity at depolarized levels was studied in guinea pig single ventricular myocytes by voltage- and current-clamp methods. In action potentials arrested at the plateau by a depolarizing current, small superimposed hyperpolarizing currents caused much larger voltage displacements than at the resting potential and sometimes induced a regenerative repolarization. Around –20 mV, sub- and suprathreshold repetitive inward currents were found. In the same voltage range, small hyperpolarizing currents reversed their polarity. During depolarizing voltage-clamp ramps, around –20 mV there was a sudden decrease in the outward current (Ins: current underlying the negative slope in the inward K+ rectifier steady state I–V relation). During repolarizing ramps, the reincrease in outward current was smaller and slower. During depolarizing and repolarizing current ramps, sudden voltage displacements showed a similar asymmetry. Repetitive Ins could continue as long as the potential was kept at the level at which they appeared. Depolarizing voltage-clamp steps also caused repetitive Ins and depolarizing current steps induced repetitive slow responses. Cadmium and verapamil reduced Ins amplitude during the depolarizing ramp. BRL 34915 (cromakalim), an opener of the ATP-sensitive K+ channel, eliminated the negative slope and Ins, whereas barium increased Ins frequency (an effect abolished by adding BRL). Depolarization-induced slow responses persisted in an NaCl-Ca-free solution. Thus, the mechanism of repetitive activity at the depolarized level appears to be related to the presence of the negative slope in the inward K+ rectifier I–V relation.  相似文献   

8.
The ionic mechanisms of the depolarizing and the hyperpolarizing quinine receptor potentials in the ciliate Paramecium caudatum were examined by using a behavioral mutant strain. The depolarizing receptor potential was induced by stimulating the anterior end of the specimen, and the hyperpolarizing receptor potential by stimulating the posterior end. The amplitude of both the depolarizing and the hyperpolarizing receptor potentials increased linearly with logarithmic increase in quinine concentration applied. Threshold concentration for inducing the depolarizing receptor potential was lower than that for the hyperpolarizing one. The peak level of the depolarizing receptor potential shifted towards the depolarizing direction with increasing external Ca2+ concentration while that of the hyperpolarizing receptor potential shifted in the depolarizing direction with increasing external K+ concentration. Under voltage-clamp conditions, the specimen produced an inward current in response to anterior stimulation, and an outward current in response to posterior stimulation. Both the peak inward and the peak outward currents showed a linear relationship with membrane potential. Current-voltage relationships of the receptor currents indicated conductance increase during the application of quinine. The depolarizing quinine receptor potential appears to be produced by an activation of Ca2+ channels, and the hyperpolarizing quinine receptor potential by an activation of K+ channels. Accepted: 3 October 1997  相似文献   

9.
In experiments on isolated spinal cord of young rats 7–14 days old under conditions of takeoff of the electrical activity of the spinal roots with a sugar bridge, it was established that the GABA-mimetic phenibut induces direct depolarization of the motoneurons. In the same concentration range (10–5-10–4 M), GABA has a dual effect. The depolarizing component of the action of GABA in part of the experiments and the depolarizing effect of phenibut in all the experiments are preserved in the presence of picrotoxin (10–5 M) and under conditions of superfusion of the brain with a solution with a reduced chloride concentration. This depolarizing effect of phenibut, not associated with the activation of GABAA receptors and chloride channels coupled with them, is unchanged in a medium with Na+ deficiency, is enhanced during depolarization of the motoneurons due to an increased concentration of K+ (10 mM) and in the presence of imidazole, but is entirely eliminated in a medium with Ca2+ deficiency, containing 2 mM Mn2+, or in the presence of theophylline (10–4 M). It is suggested that phenibut, and to some degree, GABA lower the intracellular concentration of cAMP by means of activation of the GABAB receptors, which leads to blocking of the functional activity of the potential-dependent calcium channels and a decrease in the calcium-activated outflowing potassium currents. The ability to weaken the inflowing calcium currents may also be the basis of the presynaptic inhibiting effect of GABA and GABA-mimetics (phenibut, baclofen, etc.) on the pulsed release of mediators by the axon terminals of catecholaminergic, glutamatergic, and GABA-ergic neurons.A. M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 481–489, July–August, 1985.  相似文献   

10.
Summary Patch-clamp measurements were made on osteoblast-like cells isolated from embryonic chick calvaria. Cell-attachedpatch measurements revealed two types of high conductance (100–250 pS) channels, which rapidly activated upon 50–100 mV depolarization. One type showed sustained and the other transient activation over a 10-sec period of depolarization. The single-channel conductances of these channel types were about 100 or 250 pS, depending on whether the pipettes were filled with a low K+ (3mm) or high K+ (143mm) saline, respectively. The different reversal potentials under these conditions were consistent with at least K+ conduction. Whole-cell measurements revealed the existence of two types of outward rectifying conductances. The first type conducts K+ ions and activates within 20–200 msec (depending on the stimulus) upon depolarizing voltage steps from <–60 mV to >–30 mV. It inactivates almost completely with a time constant of 2–3 sec. Recovery from inactivation is biphasic with an initial rapid phase (1–2 sec) followed by a slow phase (>20 sec). The second whole-cell conductance activates at positive membrane potentials of >+50 mV. It also rapidly turns on upon depolarizing voltage steps. Activation may partly disappear at the higher voltages. Its single channels of 140 pS conductance were identified in the whole cell and did conduct K+ ions but were not highly Cl or Na+ selective. The results show that osteoblasts may express various types of voltage controlled ionic channels. We predict a role for such channels in mineral metabolism of bone tissue and its control by osteoblasts.  相似文献   

11.
Abstract— The cerebral cortex of rats at postnatal ages of 5,15,30 and 50 days was homogenized and fractionated to separate the crude mitochondrial fraction. This fraction was osmotically shocked and the Mi fraction and subfractions were separated. The variations with age in the morphological composition of subfractions M1 0·8, Mi 1·3 and M1p were studied under the electron microscope. Because of the changes observed in the various fractions the need for such type of control is stressed. The changes in total protein and proteolipid-protein of the fractions at different ages, as well as the acetylcholinesterase activity and the binding of d -[dimethyl?14C]tubocurarine were studied. The results obtained were interpreted on the basis of the important morphogenetic changes that the cerebral cortex undergoes postnatally. The progressive and parallel increase in acetylcholinesterase and in the binding of d -[dimethyl-14C]tubocurarine to proteolipids of fraction Mi 1·3, suggest a close relationship between these two events and the development of the cholinergic synapses.  相似文献   

12.
Rodent lens connexin46 (rCx46) formed active voltage-dependent hemichannels when expressed in Xenopus oocytes. Time-dependent macroscopic currents were evoked upon depolarization. The observed two activation time constants were weakly voltage-dependent and in the order of hundreds of milliseconds and seconds, respectively. Occasionally, the macroscopic steady-state current and the corresponding current-voltage curve showed inactivation at high depolarizing voltages (>+50 mV). To account for the fast recovery from inactivation (<2 msec) favored by hyperpolarization, a four-state kinetic model (C 1 closed C 2 closed O open I inactivated ) is proposed. In the absence of inactivation, the macroscopic conductance decreased and inactivation became visible at voltages positive of +50 mV when the rCx46-expressing oocytes were treated with the protein-kinase-C-activators OAG or TPA, high external concentrations of Ca2+ or H+. However, the underlying mechanisms of OAG, H+ or Ca2+ action were different. While OAG did not alter the voltage-dependent activation of the rCx46-hemichannels, an increase in the external Ca2+ or H+ level shifted the voltage threshold for activation to more positive voltages. In contrast to Ca2+, protons were not effective in the physiological concentration range. We propose that under physiological conditions only external Ca2+ and intracellular PKC-dependent processes regulate rCx46 in the lens. Received: 30 March 1999/Revised: 18 September 1999  相似文献   

13.
Continuous sucrose density gradient subfractions from bovine adrenal medullary microsomes were found to accumulate 45Ca2+ in the presence of ATP and ammonium oxalate mainly in subfractions of intermediate density. (Na+ + K+)-ATPase (plasma membrane marker) and Ca2+-ATPase activities were also concentrated in these intermediate subfractions but thiamine pyrophosphatase (Golgi apparatus marker) was not. NADH oxidase (endoplasmic reticulum marker) activity was distributed throughout all subfractions.45Ca2+ accumulation in adrenal cortical microsomes was found to rise and fall in parallel with thiamine pyrophosphatase but not with (Na+ + K+)-ATPase or NADH oxidase activities.Accumulation of 45Ca2+ in membrane vesicles in these experiments suggests the existence of a calcium transfer mechanism in plasma membranes of the adrenal medulla but not adrenal cortex.  相似文献   

14.
In various cellular subfractions of Calendula officinalis leaves a study was made of the distribution of polyprenyl quinones and α-tocopherol and the dynamics of their labelling with 14CO2 and acetate-[1-14C] and incorporation of mevalonate-[2-14C] after 3 hr. It was confirmed that plastoquinone occurs only in the chloroplasts, ubiquinone only in the mitochondria and α-tocopherol in both these subfractions. Phylloquinone was found in the chloroplast and mitochondrial fractions as well as in the post-mitochondrial supernatant. Studies of the dynamics of radioactive precursor incorporation indicated that α-tocopherol is metabolized more rapidly than the polyprenyl quinones studied; the incorporation of mevalonate-[2-14C] suggests that the side chain of plastoquinone can be synthesized in the cytoplasm and transported to the chloroplasts.  相似文献   

15.
Abstract: Using sequential incubations in media of different K+ composition, we investigated the dynamics of choline (Ch) uptake and acetylcholine (ACh) synthesis in rat brain synaptosomal preparations, using two different deuterated variants of choline and a gas chromatographic-mass spectrometric (GC-MS) assay for ACh and Ch. Synaptosomes were preincubated for 10 min in a Krebs medium with or without high K+ and with 2 μM-[2H9]Ch. At the end of the preincubation all variants of ACh and Ch were measured in samples of the pellet and medium. In the second incubation (4 min) samples of synaptosomes were resuspended in normal or high K+ solutions containing [2H4]Ch (2 μM) and all variants of ACh and Ch were measured in the pellet and medium at the end of this period. This protocol allowed us to compare the effects of preincubation in normal or high K+ solution on the metabolism during a second low or high K+ incubation of a [2H9]Ch pool accumulated during the preincubation period. Moreover, we were able to compare and contrast the effects of this protocol on [2H9]Ch metabolism versus [2H4]Ch metabolism. The most striking result we obtained was that [2H9]Ch that had been retained by the synaptosomes after the preincubation was not acetylated during a subsequent incubation in normal or high K+ media. This result suggests that if an intraterminal pool of Ch is involved in ACh synthesis, the size of this pool is below the limits of detection of our assay. We have confirmed the observation that a prior depolarizing incubation results in an enhanced uptake of Ch during a second incubation in normal K+ Krebs. Moreover, Ch uptake is stimulated by prior incubation under depolarizing conditions relative to normal preincubation when the second incubation is in a high K+ solution. These results are discussed in terms of current models of the regulation of ACh synthesis in brain.  相似文献   

16.
Hearing relies on faithful signal transmission by cochlear inner hair cells (IHCs) onto auditory fibres over a wide frequency and intensity range. Exocytosis at IHC ribbon synapses is triggered by Ca2+ inflow through CaV1.3 (L-type) Ca2+ channels. We investigated the macroscopic (whole-cell) and elementary (cell-attached) properties of Ca2+ currents in IHCs positioned at the middle turn (frequency ∼2 kHz) of the adult gerbil cochlea, which is their most sensitive hearing region. Using near physiological recordings conditions (body temperature and a Na+ based extracellular solution), we found that the macroscopic Ca2+ current activates and deactivates very rapidly (time constant below 1 ms) and inactivates slowly and only partially. Single-channel recordings showed an elementary conductance of 15 pS, a sub-ms latency to first opening, and a very low steady-state open probability (P o: 0.024 in response to 500-ms depolarizing steps at ∼−18 mV). The value of P o was significantly larger (0.06) in the first 40 ms of membrane depolarization, which corresponds to the time when most Ca2+ channel openings occurred clustered in bursts (mean burst duration: 19 ms). Both the P o and the mean burst duration were smaller than those previously reported in high-frequency basal IHCs. Finally, we found that middle turn IHCs are likely to express about 4 times more Ca2+ channels per ribbon than basal cells. We propose that middle-turn IHCs finely-tune CaV1.3 Ca2+ channel gating in order to provide reliable information upon timing and intensity of lower-frequency sounds.  相似文献   

17.
Application of serotonin (5-hydroxytryptamine; 5-HT) to rat dorsal root ganglion neurons under conditions in which potassium conductance was blocked by cesium ions elicited depolarizing responses followed by an increase in membrane conductance. The responses did not exhibit desensitization and were due to activation of 5-HT receptors of the third type (5-HT3Rs), since they were insensitive to methysergide, the 5-HT2R antagonist, but were inhibited by tropicetrone (ISC 205–930) and metoclopramide, the 5-HT3R antagonists. The reversal potential of the 5-HT-induced depolarizing responses was –11.9 mV; their amplitude decreased following a decrease in extracellular Na+ concentration but remained constant after intracellular injection of GTP. The amplitude of the responses increased following elevation of intracellular cAMP concentration caused by theophylline or sodium fluoride whose potentiating effect was reduced by butamide, a protein kinase A inhibitor. Potentiation of the 5-HT-induced responses was also produced by increased intracellular Ca2+ concentration following either direct intracellular injections or a burst of action potentials. The potentiation could be prevented by trifluoroperazine, the calmodulin inhibitor. The 5-HT effects were also potentiated by methylfurmetide, an activator of muscarinic acetylcholine receptors. The effect of methylfurmetide was slightly decreased by trifluoroperazine and was markedly decreased by polymixin B, a protein kinase C inhibitor. The effects of 5-HT were also enhanced by ethanol.Neirofiziologiya/Neurophysiology, Vol. 25, pp. 258–263, July–August, 1993.  相似文献   

18.
GABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs.These simulations revealed for GABAergic synapses located at the soma an EGABAThr close to action potential threshold (EAPThr), while with increasing dendritic distance EGABAThr shifted to positive values. The impact of GABA on AMPA-mediated inputs revealed a complex temporal and spatial dependency. EGABAThr depends on the temporal relation between GABA and AMPA inputs, with a striking negative shift in EGABAThr for AMPA inputs appearing after the GABA input. The spatial dependency between GABA and AMPA inputs revealed a complex profile, with EGABAThr being shifted to values negative to EAPThr for AMPA synapses located proximally to the GABA input, while for distally located AMPA synapses the dendritic distance had only a minor effect on EGABAThr. For tonic GABAergic conductances EGABAThr was negative to EAPThr over a wide range of gGABAtonic values. In summary, these results demonstrate that for several physiologically relevant situations EGABAThr is negative to EAPThr, suggesting that depolarizing GABAergic responses can mediate excitatory effects even if EGABA did not reach EAPThr.  相似文献   

19.
Isolation and partial characterization of rat brain synaptic plasma membranes   总被引:21,自引:8,他引:13  
Abstract— Synaptic plasma membranes from the cortices of adult rat brain were isolated from synaptosomes prepared by flotation of a washed mitochondrial pellet (P2) in a discontinuous Ficoll-sucrose gradient. Contamination of the synaptosome fraction by microsomes was estimated by enzymic and chemical analysis to be less than 15 per cent. (2) The purified synaptosome fraction was subjected to osmotic shock, subfractionated on a discontinuous sucrose gradient and the distribution of enzymic and chemical markers for synaptic plasma membranes, microsomal membranes and mitochondria was determined. (3) Comparison of synaptosome subfractions prepared in the presence and absence of 1 mM NaH2 PO4/0.1 mM EDTA buffer pH 7.5, indicated that the ionic composition of the isolation medium markedly affected the distribution and enzymic composition of the subfractions. (4) Synaptic plasma membranes prepared in the presence of PO4/EDTA exhibited a 10-fold enrichment in [Na++ K+] ATPase and were characterized by less than 15 and 10 per cent contamination by microsomes and mitochondria respectively. (5) The polypeptide composition of the purified synaptic plasma membranes was compared with the microsomes and mitochondria by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. No differences between the protein and glycoprotein composition of the synaptic plasma membranes and microsomes were detected. The mitochondria, in contrast, possessed a unique protein composition.  相似文献   

20.
A study was made of the phosphorylation of chromatographically purified histone H1 subfractions from the liver of premetamorphic tadpoles (Ranacatesbeiana). Two H1 subfractions were obtained which differed in terms of net incorporation of [32P]phosphate invivo. Analysis of N-bromosuccinimide cleavage products further revealed that the two subfractions also differed in the relative distribution of [32P]phosphate in N- and C-terminal regions of the molecule. Incorporation of [32P]phosphate into both regions of the molecule occurred virtually exclusively in serine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号