首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somatic portions of gonads in two phanerozonian sea-stars, Ctenodiscus crispatus and Hippasteria phrygiana, were similar in all aspects of gross structure and histology seen previously in both forcipulate and spinulosan asteroids. For the first time, detailed ultrastructural observations have been made of cells and tissues that reveal several features believed to be of universal occurrence in the gonads of asteroids. These include flagellated-collar cells in the visceral peritoneum and other coelomically derived epithelia, muscular-flagellated-collar cells in the visceral peritoneum and genital coelomic (perihaemal) sinus, the digestion of collagen fibers by cells in the connective tissue layer, and the intimate relationship of the genital haemal sinus and the entire germinal epithelium. Structural and functional compartmentalization are discussed in relation to major activities of the gonad throughout the annual reproductive cycle. The distinctive ultrastructure and current generation of flagellated-collar cells found in the visceral peritoneum are analyzed relative to their role in nutrient transport to gonadal tissues. The single flagellum of each flagellated-collar cell beats in coordination with those on neighboring cells to produce extremely rapid, oriented currents of coelomic fluid. The form of beating in an individual flagellum is planar, and the resulting synchronized activity of many adjacent flagella is non-metachronal; both of these characteristic aspects of current production have, thus far, been encountered together only in the Echinodermata. Flagellated-collar cells are efficient in generating currents which mix contents of the coelomic fluid, and they can presumably supply themselves with nutrients. It is concluded that nutrients so obtained are generally not passed through the wall of the gonad to the germinal epithelium and, as a result, have little to do with nutrition of somatic and germinal cells of the germinal epithelium. Alternatively, well-developed genital portions of the haemal system of the sea-star are advanced as the major channels supplying nutrients to germinal epithelia during gametogenesis.  相似文献   

2.
Blottner S  Roelants H 《Theriogenology》1998,49(7):1275-1287
We compared 2 methods for the quantification of proliferation in somatic and spermatogenic compartments of post mortem-collected testes in cattle and roe deer. Proliferation was evaluated by estimation of the tissue polypeptid specific antigen (TPS) using an ELISA. This proliferation-specific marker was detected in homogenized cells after selective enrichment of different cell types by density gradient centrifugation. The haploid, diploid and tetraploid cells were monitored by one-parameter flow cytometry and analyzed for mitotic cell cycle. Somatic and spermatogenic cells were discriminated by dual-parameter flow cytometry after DNA staining with propidium iodide and selective labelling of stromatic cells with a vimentin antibody. The TPS was related to the ploidy of cells and their somatic or spermatogenic type. High concentrations of TPS were found in both species. The TPS values varied with different contents of spermatogenic and somatic cells in the fractions of the density gradient. The TPS was positively correlated with spermatogenic cells in the G2/M phase of mitotic cycle (r = 0.474; P < 0.01) and negatively correlated with somatic cells (r = -0.676; P < 0.0001) in roe deer (n = 40). Discrimination of germinative and stromatic cells in the G2-M phase showed their varying proliferation during the annual cycle in roe deer. The quantification of tetraploid spermatogenic cells allowed the calculation of an exact meiotic transformation (ratio haploid:tetraploid cells). In conclusion, TPS indicates proliferation in the germinative compartment of the testes. However, this marker provides only relative values, without information on the number and type of proliferating cells. Dual-parameter flow cytometry using specific staining for vimentin proves to be a better method for studying changing mitotic and meiotic steps during the involution and recrudescence of testes in seasonally breeding ruminants, as it relates proliferative processes directly to both spermatogenic and somatic cells.  相似文献   

3.
An understanding of testicular anatomy, development, and seasonality has implications for studies of morphology, behavior, physiology, and bioenergetics of males. Ontogenetic testicular development and spermatogenesis is essentially unknown for chondrichthyans. We examined embryo, juvenile, and adult male Cownose Rays (Rhinoptera bonasus) during development and throughout the annual reproductive cycle. Spermatogonia and Sertoli cells originated from germ cells and somatic cells, respectively, in the embryonic testicular germinal epithelium. In embryos and small juveniles, discrete regions of spermatocyst production appeared within a series of papillae that projected from the dorsal surface of each testis. Because these papillary germinal zones appeared to proliferate through ontogeny, we hypothesize that (1) the germinal zones of juvenile and adult testes are derived from embryonic testicular papillae that form from the germinal epithelium and (2) the papillae become the dorso-central portion of the distinct testicular lobes that form at maturation due to increased spermatocyst production. Our observations indicate that testicular development and the process of spermatogenesis began during embryonic development and increased in scale through ontogeny until maturation, when distinct testicular lobes formed and began enlarging or shrinking based on the annual reproductive cycle. Gonadosomatic indices peaked corresponding to seasonal increased sperm production between January and April, just prior to the April–June mating period. In all life stages, spermatocysts had efferent ducts associated with them from their formation through all stages of development. Year-round presence in the Charlotte Harbor estuarine system, Florida made R. bonasus a good model for beginning to understand ontogenetic gonad development and spermatogenesis in chondrichthyans, especially viviparous rays.  相似文献   

4.
Five reproductive classes of cobia Rachycentron canadum , caught along the Gulf of Mexico and the south-east Atlantic coast of the U.S.A., are described during the annual reproductive cycle. These are based upon changes in the testicular germinal epithelium and the stages of germ cells that are present: early maturation, mid maturation, late maturation, regression and regressed. During early maturation, the germinal epithelium is continuous from the testicular ducts to the periphery of the testis and active spermatogenesis occurs throughout the testis. In mid maturation, the germinal epithelium near the ducts becomes discontinuous, but it remains continuous distally. In late maturation, a discontinuous germinal epithelium extends all along the lobules to the testicular periphery; lobules are swollen with sperm and there is minimal spermatogenesis. The regression class is characterized by a discontinuous epithelium throughout the testis, sperm storage and widely scattered spermatocysts. Spermatogonial proliferation also occurs along the lobule walls and at the periphery of the testis. In regressed testes, spermatogonia exist only in a continuous or discontinuous germinal epithelium, although residual sperm are nearly always present in the lobules and ducts. The presence or absence of sperm is not an accurate indicator of reproductive classes. At the periphery of the testis in the regression and regressed classes, the distal portions of lobules elongate as cords of cells containing spermatogonia and Sertoli cells. All reproductive classes can be identified in paraffin sections, although plastic sections provide better resolution. Using maturation classes defined by changes in the germinal epithelium to describe testicular development and spermatogenesis gives a more accurate picture than does using the traditional terminology.  相似文献   

5.
6.
Summary During development of juvenile and young adult carp (Cyprinus carpio, L., Teleostei) three differentiation stages were distinguished in the testis: the prespermatogenic, the early spermatogenic and the advanced spermatogenic testis. Carp testis tissue of these stages was dissociated by enzymatic digestion and viable testis cells with well preserved morphological features were obtained. The surface location and stage-specificity of differentiation antigens on these germ cells was investigated using monoclonal antibodies (MAbs) raised against carp spermatozoa. Binding of MAbs to cells was visualized with immunofluorescence as well as in the immunogold staining assay. Both methods revealed that antigenic determinants defined by seven MAbs were located on the outer surface of testis cells. Four MAbs, i.e. WCS 3, 17, 28 and 29, reacted with germ cells from both pre-spermatogenic testes (WCS 28 weakly) and spermatogenic testes. The antigenic determinants defined by three other MAbs, i.e. WCS 7, 11 and 12, appeared only after the onset of spermatogenesis. In the immunogold staining assay a post-fixation and nuclear staining procedure was developed which allowed identification of isolated germ cells, revealing clearly, for all seven MAbs, that the determinants were expressed on germ cells but not on somatic cells and, for WCS 7, 11 and 12 only, that the determinants first appeared on small spermatogonia prior to meiosis. A survey of the immunogold assay on the binding of the seven MAbs with isolated germ cells from ovaries, is included.  相似文献   

7.
Incorporation of3H-thymidine both in germinal and somatic cell types in young male adults of the onion fly,Hylemya antiqua (Meigen) reveals among other things the temporal pattern of spermatogenesis. Labeling of cells in the female reproductive organs is also described. Nuclei of fat cells, midgut epithelium, accessory glands and muscles, and occasionally hemocytes also show labeling. In oenocytes and the Malpighian tubules tritiated thymidine is incorporated in the cytoplasm.  相似文献   

8.
9.
Summary Spermatogenesis inHydra carnea was investigated. The cell proliferation and differentiation kinetics of intermediates in the spermatogenesis pathway were determined, using quantitative determinations of cell abundance, pulse and continuous labelling with3H-thymidine and nuclear DNA measurements. Testes develop in the ectoderm of male hydra as a result of interstitial cell proliferation. Gonial stem cells and proliferating spermatogonia have cell cycles of 28 h and 22 h, respectively. Stem cells undergo four, five or six cell divisions prior to meiosis which includes a premeiotic S+G2 phase of 20 h followed by a long meiotic prophase (22 h).Spermatid differentiation requires 12–29 h. When they first appear, testes contain only proliferating spermatogonia; meiotic and postmeiotic cells appear after 2 and 3 days, respectively and release of mature sperm begins after 4 days. Mature testes produce about 27,000 sperm per day over a period of 4–6 days: about 220 gonial stem cells per testis are required to support this level of sperm differentiation. Further results indicate that somatic (e.g. nematocyte) differentiation does not occur in testes although it continues normally in ectodermal tissue outside testes. Our results support the hypothesis that spermatogenesis is controlled locally in regions of the ectoderm where testes develop.  相似文献   

10.
The hypothesis that PGK-B, like LDH-C4, is restricted to spermatogenic cells was explored by examining isozyme patterns in testes from mice depleted of germinal cells by surgical cryptorchism. In experimentally cryptorchized C57BL/10Sn males, decline in PGK-B activity paralleled decline in LDH-C4 activity and was correlated with degeneration of spermatocytes, spermatids, and spermatozoa. Trace amounts of these sperm isozymes found in cryptorchid testes after the depletion of maturing germ cells probably came from degenerated spermatids and spermatocytes and not from somatic testicular cells.  相似文献   

11.
During ultrastructural studies on the spermatogenesis of two demosponges, Raspaciona aculeata and Petrosia ficiformis, somatic cells were detected within their spermatic cysts. In R. aculeata large, amoeboid somatic cells, presumably derived from follicle cells, were found inside cysts filled with secondary spermatocytes. These cells were actively phagocytosing spermatocytes. Such phagocytosis could be directed to eliminate aberrant spermatogenic cells, maintain appropriate cell number within the cysts, or recapture energetic reserves originally allocated to the reproductive process via phagocytosis of spermatocytes. In P. ficiformis, somatic round cells were observed only after the spawning event, phagocytosing unspawned sperm in nearly emptied spermatic cysts. Unlike in R. aculeata, these cells were more similar to archaeocytes (common cells of the demosponge mesohyl with phagocytic activity) than to follicle cells. Phagocytosis of spermatogenic cells and unspawned spermatozoa by somatic cells from the wall of the testes is a well-known process in vertebrates and many invertebrates. Occurrence of somatic cells in the spermatic cysts of sponges, whose function appears to be partially analogous to that of Sertoli cells, reveals that sponges possess cellular mechanisms to regulate testis functioning that are equivalent to those in higher metazoans.  相似文献   

12.
We studied the in vitro effect of Sertoli cells on boar spermatogonia isolated from the testes of 60-day-old crossbred boars. In order to enrich the culture with spermatogonia, the cells were purified by density gradient centrifugation with the use of Percoll gradient followed by separation based on adhesive capacities of cells. We found lipid drops stained by Oil Red O in Sertoli cells. The experiments showed that the cultivation of boar spermatogonia in the presence of Sertoli cells (for up to 35 days) provide the same way of differentiation as in testes in natural conditions. After 10 days of cultivation, spermatogenic cells form groups, chains, and suspension clusters. By this time, spermatogenic colonies are formed; we analyzed the expression of Nanog and Plzf genes in these colonies by real-time PCR. The expression rate of Nanog gene in experimental cell clones obtained by the short-term cultivation of spermatogonia cells in the presence of Sertoli cells was 200 times higher than in freshly isolated spermatogonia cells. The product of Plzf gene expression was found both in freshly isolated spermatogenic cells and in cell clones obtained in vitro. After long-term cultivation of spermatogonia on Sertoli cells, we observed in vitro differentiation to the lineage of spermatogenesis and formation of separate motile sperm cells after 30–33 days. At this stage, the cell population was heterogeneous. In the absence of Sertoli cells, the differentiation of boar spermatogonia cells in culture stopped after 7 days of cultivation. The data show that the cultivation of boar spermatogonia cells on Sertoli cells contributes to their in vitro differentiation to the lineage of spermatogenesis and can help to obtain boar sperm cell culture.  相似文献   

13.
金鱼精巢的细胞构造与精子的发生和形成   总被引:38,自引:2,他引:38  
  相似文献   

14.
Zhang L  Han XK  Qi YY  Liu Y  Chen QS 《Theriogenology》2008,69(9):1148-1158
To elucidate the processes involved in the spatial and temporal maturation of spermatogenic cells in the testes of the soft-shelled turtle, Pelodiscus sinensis, we used a histological morphology method, TdT-mediated dUTP nick end-labeling (TUNEL) assay, the proliferating-cell nuclear antigen (PCNA), and electron microscopy. Seminiferous tubules from 100 turtles, normal for size of testes and semen quality, were collected during 10 months of a complete annual cycle (10 turtles/month). The seminiferous epithelium was spermatogenically active through the summer and fall, but quiescent throughout the rest of the year; germ cells progressed through spermatogenesis in a temporal rather than a spatial pattern, resulting in a single spermatogenic event that climaxed with one massive sperm release in November. The TUNEL method detected few apoptotic cells in spermatogenic testis, with much larger numbers during the spermatogenically quiescent phase. Spermatocytes were the most common germ cell types labeled by the TUNEL assay (a few spermatogonia were also labeled). Apoptotic spermatocytes had membrane blebbing and chromatin condensation during the resting phase, but not during active spermatogenesis. We inferred that accelerated apoptosis of spermatogonia and spermatocytes partly accounted for germ cell loss during the nonspermatogenic phase. The PCNA was expressed in nuclei of spermatogonia and primary spermatocytes during the spermatogenically active phase. During the regressive phase, PCNA-positive cells also included spermatogonia and spermatocytes, but the number of positive spermatocytes was less than that during the spermatogenically active phase. We concluded that seasonal variations in spermatogenesis in the soft-shelled turtle were both stage- and process-specific.  相似文献   

15.
In order to investigate the function of gonadal somatic cells in the sex differentiation of germ cells, we produced chimera fish containing both male (XY) and female (XX) cells by means of cell transplantation between blastula embryos in the medaka, Oryzias latipes. Sexually mature chimera fish were obtained from all combinations of recipient and donor genotypes. Most chimeras developed according to the genetic sex of the recipients, whose cells are thought to be dominant in the gonads of chimeras. However, among XX/XY (recipient/donor) chimeras, we obtained three males that differentiated into the donor's sex. Genotyping of their progeny and of strain-specific DNA fragments in their testes showed that, although two of them produced progeny from only XX spermatogenic cells, their testes all contained XY cells. That is, in the two XX/XY chimeras, germ cells consisted of XX cells but testicular somatic cells contained both XX and XY cells, suggesting that the XY somatic cells induced sex reversal of the XX germ cells and the XX somatic cells. The histological examination of developing gonads of XX/XY chimera fry showed that XY donor cells affect the early sex differentiation of germ cells. These results suggest that XY somatic cells start to differentiate into male cells depending on their sex chromosome composition, and that, in the environment produced by XY somatic cells in the medaka, germ cells differentiate into male cells regardless of their sex chromosome composition.  相似文献   

16.
Radiation and chemotherapeutic drugs cause permanent sterility in male rats, not by killing most of the spermatogonial stem cells, but by blocking their differentiation in a testosterone-dependent manner. However, it is not known whether radiation induces this block by altering the germ or the somatic cells. To address this question, we transplanted populations of rat testicular cells containing stem spermatogonia and expressing the green fluorescent protein (GFP) transgene into various hosts. Transplantation of the stem spermatogonia from irradiated adult rats into the testes of irradiated nude mice, which do not show the differentiation block of their own spermatogonia, permitted differentiation of the rat spermatogonia into spermatozoa. Conversely transplantation of spermatogonial stem cells from untreated prepubertal rats into irradiated rat testes showed that the donor spermatogonia were able to colonize along the basement membrane of the seminiferous tubules but could not differentiate. Finally, suppression of testosterone in the recipient irradiated rats allowed the differentiation of the transplanted spermatogonia. These results conclusively show that the defect caused by radiation in the rat testes that results in the block of spermatogonial differentiation is due to injury to the somatic compartment. We also observed colonization of tubules by transplanted Sertoli cells from immature rats. The present results suggest that transplantation of spermatogonia, harvested from prepubertal testes to adult testes that have been exposed to cytotoxic therapy might be limited by the somatic damage and may require hormonal treatments or transplantation of somatic elements to restore the ability of the tissue to support spermatogenesis.  相似文献   

17.
Peroxisomes are organelles with main functions in the metabolism of lipids and of reactive oxygen species. Within the testis, they have different functional profiles depending on the cell types. A dysfunction of peroxisomes interferes with regular spermatogenesis and can lead to infertility due to spermatogenic arrest. However, so far only very little is known about the functions of peroxisomes in germ cells. We have therefore analyzed the peroxisomal compartment in germ cells and its alterations during spermatogenesis by fluorescence and electron microscopy as well as by expression profiling of peroxisome-related genes in purified cell populations isolated from mouse testis. We could show that peroxisomes are present in all germ cells of the germinal epithelium. During late spermiogenesis, the peroxisomes form large clusters that are segregated from the spermatozoa into the residual bodies upon release from the germinal epithelium. Germ cells express genes for proteins involved in numerous metabolic pathways of peroxisomes. Based on the expression profile, we conclude that newly identified functions of germ cell peroxisomes are the synthesis of plasmalogens as well as the metabolism of retinoids, polyunsaturated fatty acids and polyamines. Thus, germ cell peroxisomes are involved in the regulation of the homeostasis of signaling molecules regulating spermatogenesis and they contribute to the protection of germ cells against oxidative stress.  相似文献   

18.
We describe seasonal variations of the histology of the seminiferous tubules and efferent ducts of the tropical, viviparous skink, Mabuya brachypoda, throughout the year. The specimens were collected monthly, in Nacajuca, Tabasco state, Mexico. The results revealed strong annual variations in testicular volume, stages of the germ cells, and diameter and height of the epithelia of seminiferous tubules and efferent ducts. Recrudescence was detected from November to December, when initial mitotic activity of spermatogonia in the seminiferous tubules were observed, coinciding with the decrease of temperature, photoperiod and rainy season. From January to February, early spermatogenesis continued and early primary and secondary spermatocytes were developing within the seminiferous epithelium. From March through April, numerous spermatids in metamorphosis were observed. Spermiogenesis was completed from May through July, which coincided with an increase in temperature, photoperiod, and rainfall. Regression occurred from August through September when testicular volume and spermatogenic activity decreased. During this time, the seminiferous epithelium decreased in thickness, and germ cell recruitment ceased, only Sertoli cells and spermatogonia were present in the epithelium. Throughout testicular regression spermatocytes and spermatids disappeared and the presence of cellular debris, and scattered spermatozoa were observed in the lumen. The regressed testes presented the total suspension of spermatogenesis. During October, the seminiferous tubules contained only spermatogonia and Sertoli cells, and the size of the lumen was reduced, giving the appearance that it was occluded. In concert with testis development, the efferent ducts were packed with spermatozoa from May through August. The epididymis was devoid of spermatozoa by September. M. brachypoda exhibited a prenuptial pattern, in which spermatogenesis preceded the mating season. The seasonal cycle variations of spermatogenesis in M. brachypoda are the result of a single extended spermiation event, which is characteristic of reptilian species. J. Morphol. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The objective of this study was to further understand the genetic mechanisms of vitamin A deficiency (VAD) induced arrest of spermatogonial stem-cell differentiation.Vitamin A and its derivatives (the retinoids) participate in many physiological processes including vision, cellular differentiation and reproduction. VAD affects spermatogenesis, the subject of our present study. Spermatogenesis is a highly regulated process of differentiation and complex morphologic alterations that leads to the formation of sperm in the seminiferous epithelium. VAD causes early cessation of spermatogenesis, characterized by degeneration of meiotic germ cells, leading to seminiferous tubules containing mostly type A spermatogonia and Sertoli cells. These observations led us to the hypothesis that VAD affects not only germ cells but also somatic cells.To investigate the effects of VAD on spermatogenesis in mice we used adult Balb/C mice fed with Control or VAD diet for an extended period of time (6–28 weeks). We first observed the chronology, then the extent of the effects of VAD on the testes. Using microarray analysis of isolated pure populations of spermatogonia, Leydig and Sertoli cells from control and VAD 18- and 25-week mice, we examined the effects of VAD on gene expression and identified target genes involved in the arrest of spermatogonial differentiation and spermatogenesis.Our results provide a more precise definition of the chronology and magnitude of the consequences of VAD on mouse testes than the previously available literature and highlight direct and indirect (via somatic cells) effects of VAD on germ cell differentiation.  相似文献   

20.
The seminiferous epithelial cycle and spermatogenic wave are conserved features of vertebrate spermatogenic organisation that reflect the need for the rigorous maintenance of sperm production. Although the cycle and the wave of the adult seminiferous epithelium have been well characterised, particularly in rodent species, their developmental origins are unknown. We show that the Sertoli cells of the pre-pubertal mouse, including those of the germ cell-deficient XXSxra mutant, exhibit coordinated, cyclical patterns of gene expression, presaging the situation in the adult testis, where Sertoli cell function is coupled to the spermatogenic cycle. In the case of the galectin 1 gene (Lgals1), localised differential expression in the Sertoli cells can be traced back to neonatal and embryonic stages, making this the earliest known molecular marker of functional heterogeneity in mammalian testis cords. In addition, the timing of germ cell apoptosis in normal pre-pubertal testes is linked to the temporal cycle of the Sertoli cells. These data show that the cycle and wave of the murine seminiferous epithelium originate at a much earlier stage in development than was previously known, and that their maintenance in the early postnatal cords depends exclusively on the somatic cell lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号