首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Batch propionic acid fermentations by Propionibacterium acidipropionici with lactose, glucose, and lactate as the carbon source were studied. In addition to propionic acid, acetic acid, succinic acid and CO2 were also formed from lactose or glucose. However, succinic acid was not produced in a significant amount when lactate was the growth substrate. Compared to fermentations with lactose or glucose at the same pH, lactate gave a higher propionic acid yield, lower cell yield, and lower specific growth rate. The specific fermentation or propionic acid production rate from lactate was, however, higher than that from lactose. Since about equimolar acid products would be formed from lactate, the reactor pH remained relatively unchanged throughout the fermentation and would be easier to control when lactate was the growth substrate. Therefore, lactate would be a preferred substrate over lactose and glucose for propionic acid production using continuous, immobilized cell bioreactors. Correspondence to: S. T. Yang  相似文献   

2.
The ability of Klebsiella oxytoca NRRL-B199 to use either lactose or the mixture of glucose and galactose as substrate for the production of 2,3-butanediol was studied in batch fermentations with different conditions of aeration and pH. 2,3-butanediol was undetected, or present in minute concentration in the fermentation broths with lactose, while it was the main product from glucose+galactose with final concentrations of up to 18.8 g/l in media at pH 6.0. Under conditions optimal for 2,3-butanediol synthesis, when aeration limited growth, the rate of biomass growth was more tightly related to the aeration rate in lactose medium than in glucose+galactose medium. These relations suggest that the growth rate is very low on lactose but still considerable on glucose+galactose when aeration rate tends toward zero. Correspondingly, the metabolism is more oxidative in the former medium, yielding mainly acetate as product.Abbreviations CDW cell dry weight  相似文献   

3.
As a first step in the research on ethanol production from lignocellulose residues, sugar fermentation by Fusarium oxysporum in oxygen-limited conditions is studied in this work. As a substrate, solutions of arabinose, glucose, xylose and glucose/xylose mixtures are employed. The main kinetic and yield parameters of the process are determined according to a time-dependent model. The microorganism growth is characterized by the maximum specific growth rate and biomass productivity, the substrate consumption is studied through the specific consumption rate and biomass yield, and the product formation via the specific production rate and product yields. In conclusion, F. oxysporum can convert glucose and xylose into ethanol with product yields of 0.38 and 0.25, respectively; when using a glucose/xylose mixture as carbon source, the sugars are utilized sequentially and a maximum value of 0.28 g/g ethanol yield is determined from a 50% glucose/50% xylose mixture. Although fermentation performance by F.␣oxysporum is somewhat lower than that of other fermenting microorganisms, its ability for simultaneous lignocellulose-residue saccharification and fermentation is considered as a potential advantage.  相似文献   

4.
The kinetics and the metabolism of Bifidobacterium adolescentis MB 239 growing on galactooligosaccharides (GOS), lactose, galactose, and glucose were investigated. An unstructured unsegregated model for growth in batch cultures was developed, and kinetic parameters were calculated with a recursive algorithm. The growth rate and cellular yield were highest on galactose, followed by lactose and GOS, and were lowest on glucose. Lactate, acetate, and ethanol yields allowed the calculation of carbon fluxes toward fermentation products. Distributions between two- and three-carbon products were similar on all the carbohydrates (55 and 45%, respectively), but ethanol yields were different on glucose, GOS, lactose, and galactose, in decreasing order of production. Based on the stoichiometry of the fructose-6-phosphate shunt and on the carbon distribution among the products, the ATP yield was calculated. The highest yield was obtained on galactose, while the yields were 5, 8, and 25% lower on lactose, GOS, and glucose, respectively. Therefore, a correspondence among ethanol production, low ATP yields, and low biomass production was established, demonstrating that carbohydrate preferences may result from different distributions of carbon fluxes through the fermentative pathway. During the fermentation of a GOS mixture, substrate selectivity based on the degree of polymerization was exhibited, since lactose and the trisaccharide were the first to be consumed, while a delay was observed until longer oligosaccharides were utilized. Throughout the growth on both lactose and GOS, galactose accumulated in the cultural broth, suggesting that β(1-4) galactosides can be hydrolyzed before they are taken up.  相似文献   

5.
The inhibitory effect of alcohol and substrates on the fermentation rate of one strain of Candida pseudotropicalis and of a respiratory-deficient mutant of this strain is investigated. For the parent strain maximum fermentative activity is identical in the presence of glucose or lactose. For a respiratory-deficient mutant, the fermentation rate is always higher than that of the parent strain. The inhibitory effect of alcohol and substrate is always less with the respiratory-deficient mutant than with the parent strain.  相似文献   

6.
The kinetics and the metabolism of Bifidobacterium adolescentis MB 239 growing on galactooligosaccharides (GOS), lactose, galactose, and glucose were investigated. An unstructured unsegregated model for growth in batch cultures was developed, and kinetic parameters were calculated with a recursive algorithm. The growth rate and cellular yield were highest on galactose, followed by lactose and GOS, and were lowest on glucose. Lactate, acetate, and ethanol yields allowed the calculation of carbon fluxes toward fermentation products. Distributions between two- and three-carbon products were similar on all the carbohydrates (55 and 45%, respectively), but ethanol yields were different on glucose, GOS, lactose, and galactose, in decreasing order of production. Based on the stoichiometry of the fructose-6-phosphate shunt and on the carbon distribution among the products, the ATP yield was calculated. The highest yield was obtained on galactose, while the yields were 5, 8, and 25% lower on lactose, GOS, and glucose, respectively. Therefore, a correspondence among ethanol production, low ATP yields, and low biomass production was established, demonstrating that carbohydrate preferences may result from different distributions of carbon fluxes through the fermentative pathway. During the fermentation of a GOS mixture, substrate selectivity based on the degree of polymerization was exhibited, since lactose and the trisaccharide were the first to be consumed, while a delay was observed until longer oligosaccharides were utilized. Throughout the growth on both lactose and GOS, galactose accumulated in the cultural broth, suggesting that beta(1-4) galactosides can be hydrolyzed before they are taken up.  相似文献   

7.
Ethanol production by Kluyveromyces fragilis and Saccharomyces cerevisiae was studied using cottage cheese whey in which 80 to 90% of the lactose present had been prehydrolyzed to glucose and galactose. Complete fermentation of the sugar by K. fragilis required 120 hr at 30°C in lactase-hydrolyzed whey compared to 72 hr in nonhydrolyzed whey. This effect was due to a diauxic fermentation pattern in lactase-hydrolyzed whey with glucose being fermented before galactose. Ethanol yields of about 2% were obtained in both types of whey when K. fragilis was the organism used for fermentation. Saccharomyces cerevisiae produced alcohol from glucose more rapidly than K. fragilis, but galactose was fermented only when S. cerevisiae was pregrown on galactose. Slightly lower alcohol yields were obtained with S. cerevisiae, owing to the presence of some lactose in the whey which was not fermented by this organism. Although prehydrolysis of lactose in whey and whey fractions is advantageous in that microbial species unable to ferment lactose may be utilized, diauxie and galactose utilization problems must be considered.  相似文献   

8.
Optimizing alcohol production from whey using computer technology   总被引:2,自引:0,他引:2  
This study was undertaken with the major goal of optimizing the ethanol production from whey using computer technology. To reach this goal, a mathematical model that would describe the fermentation and that could be used for the optimization was developed. Kluyveromyces fragilis was the microorganism used to ferment the lactose in the whey into ethanol. Preliminary studies showed that K. fragilis produced about 90% of the theoretical ethanol yield when grown in whey-complemented media. However, when this yeast is grown in nonsupplemented whey media, it does not produce more than 32% of that yield. Comparative batch fermentations of lactose and whey-complemented media showed that whey possibly contains enhancing components for yeast growth and ethanol production. To obtain the mathematical model, the one-to-one effect of the process variables (lactose and yeast extract concentrations, air flowrate, pH, and dilution rate) on the ethanol production were first investigated. Experiments on the pH effect showed that a decrease in pH from 7 to 4 produced an increase in ethanol concentration from 16.5 to 26.5 g/L (50 g/L initial lactose). The results obtained from modeling of the continuous fermentation using the previously listed variables showed that air flowrate, pH, and dilution rate were the process variables that most influence the production of ethanol.  相似文献   

9.
Permeabilized cells of Kluyveromyces marxianus CCY eSY2 were tested as the source of lactase in the ethanol fermentation of concentrated deproteinized whey (65–70 g/l lactose) by Saccharomyces cerevisiae CCY 10–13–14. Rapid lactose hydrolysis by small amounts of permeabilized cells following the fermentation of released glucose and galactose by S. cerevisiae resulted in a twofold enhancement of the overall volumetric productivity (1.03 g/l × h), compared to the fermentation in which the lactose was directly fermented by K. marxianus.  相似文献   

10.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

11.
G. Moulin  P. Galzy 《Mycopathologia》1978,66(1-2):73-76
Kluyveromyces lactis CBS 683, showed no Crabtree effect but the Pasteur effect was very strong. It could be seen that the metabolism of glucose was adaptative. The anaerobic fermentation of lactose was always greater than the anaerobic fermentation on glucose and galactose. The transport across wall and cell membrane of glucose and galactose limits the fermentation rate of these substrates.  相似文献   

12.
Ethanolic fermentation of simple sugars is an important step in the production of bioethanol as a renewable fuel. Significant levels of organic acids, which are generally considered inhibitory to microbial metabolism, could be accumulated during ethanolic fermentation, either as a fermentation product or as a by-product generated from pre-treatment steps. To study the impact of elevated concentrations of organic acids on ethanol production, varying levels of exogenous acetate or lactate were added into cultures of Thermoanaerobacter ethanolicus strain 39E with glucose, xylose or cellobiose as the sole fermentation substrate. Our results found that lactate was in general inhibitory to ethanolic fermentation by strain 39E. However, the addition of acetate showed an unexpected stimulatory effect on ethanolic fermentation of sugars by strain 39E, enhancing ethanol production by up to 394%. Similar stimulatory effects of acetate were also evident in two other ethanologens tested, T. ethanolicus X514, and Clostridium thermocellum ATCC 27405, suggesting the potentially broad occurrence of acetate stimulation of ethanolic fermentation. Analysis of fermentation end product profiles further indicated that the uptake of exogenous acetate as a carbon source might contribute to the improved ethanol yield when 0.1% (w/v) yeast extract was added as a nutrient supplement. In contrast, when yeast extract was omitted, increases in sugar utilization appeared to be the likely cause of higher ethanol yields, suggesting that the characteristics of acetate stimulation were growth condition-dependent. Further understanding of the physiological and metabolic basis of the acetate stimulation effect is warranted for its potential application in improving bioethanol fermentation processes.  相似文献   

13.
以亚硫酸盐甘蔗渣浆酶解液作为原料,利用C. shehatae发酵制取燃料乙醇。结果表明:还原糖最适初始质量浓度为葡萄糖140 g/L、木糖60 g/L、酶解液总糖80 g/L。利用初始葡萄糖55.06 g/L、木糖11.18 g/L、纤维二糖4.51 g/L的亚硫酸盐甘蔗渣浆酶解液发酵,经18 h获得乙醇22.98 g/L。乙醇得率为67.23%,葡萄糖利用率为99.27%,木糖利用率为32.96%,C. shehatae适合作为蔗渣为原料的乙醇发酵菌株。  相似文献   

14.
Summary Under otherwise identical fermentation conditions, the sugar source has been shown to have a marked effect on citric acid production by Aspergillus niger. Sucrose was the most favourable source, followed by glucose and fructose and then lactose. No citric acid was produced from galactose. Strong relationships were observed between citric acid production and the activities of certain enzymes in myccelial cell-free extracts prepared from fermentation samples. When sucrose, glucose, or fructose was the sugar source pyruvate carboxylase activity was high, but 2-oxoglutarate dehydrogenase activity was not detected. When galactose was the sugar source pyruvate carboxylase activity was low, but 2-oxoglutarate dehydrogenase activity was high. It is suggested that whereas glucose and fructose repress 2-oxoglutarate dehydrogenase, thereby causing accumulation of citric acid, galactose does not. The activity of aconitase showed a direct relationship to the citric acid production rate. Thus, the activity was highest when sucrose was the sugar source, and lowest when galactose was the source. It is suggested that when large amounts of citric acid are lost from the cell the activity of aconitase increases as a response to the diminished intracellular supply of its substrate.  相似文献   

15.
Zou  Jing  Chen  Xiaohui  Hu  Yinghong  Xiao  Dongguang  Guo  Xuewu  Chang  Xuedong  Zhou  Lisha 《Biotechnology letters》2021,43(8):1607-1616
Objectives

Development of a system for direct lactose to ethanol fermentation provides a market for the massive amounts of underutilized whey permeate made by the dairy industry. For this system, glucose and galactose metabolism were uncoupled in Saccharomyces cerevisiae by deleting two negative regulatory genes, GAL80 and MIG1, and introducing the essential lactose hydrolase LAC4 and lactose transporter LAC12, from the native but inefficient lactose fermenting yeast Kluyveromyces marxianus.

Results

Previously, integration of the LAC4 and LAC12 genes into the MIG1 and NTH1 loci was achieved to construct strain AY-51024M. Low rates of lactose conversion led us to generate the Δmig1Δgal80 diploid mutant strain AY-GM from AY-5, which exhibited loss of diauxic growth and glucose repression, subsequently taking up galactose for consumption at a significantly higher rate and yielding higher ethanol concentrations than strain AY-51024M. Similarly, in cheese whey permeate powder solution (CWPS) during three, repeated, batch processes in a 5L bioreactor containing either 100 g/L or 150 g/L lactose, the lactose uptake and ethanol productivity rates were both significantly greater than that of AY-51024M, while the overall fermentation times were considerably lower.

Conclusions

Using the Cre-loxp system for deletion of the MIG1 and GAL80 genes to relieve glucose repression, and LAC4 and LAC12 overexpression to increase lactose uptake and conversion provides an efficient basis for yeast fermentation of whey permeate by-product into ethanol.

  相似文献   

16.
A mathematical model was formulated to simulate cell growth, plasmid loss and recombinant protein production during the aerobic culture of a recombinant yeast S. cerevisiae. Model development was based on three simplified metabolic events in the yeast: glucose fermentation, glucose oxidation and ethanol oxidation. Cell growth was expressed as a composite of these metabolic events. Their contributions to the total specific growth rate depended on the activities of the pacemaker enzyme pools of the individual pathways. The pacemaker enzyme pools were regulated by the specific glucose uptake rate. The effect of substrate concentrations on the specific growth rate was described by a modified Monod equation. It was assumed that recombinant protein formation is only associated with oxidative pathways. Plasmid loss kinetics was formulated based on segregational instability during cell division by assuming constant probability of plasmid loss. Experiments on batch fermentation of recombinant S. cerevisiae C468/pGAC9 (ATCC 20690), which expresses Aspergillus awamori glucoamylase gene and secretes glucoamylase into the extracellular medium, were carried out in an airlift bioreactor in order to evaluate the proposed model. The model successfully predicted the dynamics of cell growth, glucose consumption, ethanol metabolism, glucoamylase production and plasmid instability. Excellent agreement between model simulations and our experimental data was achieved. Using published experimental data, model agreement was also found for other recombinant yeast strains. In general, the proposed model appears to be useful for the design, scale-up, control and optimization of recombinant yeast bioprocesses.  相似文献   

17.
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8?g/L in xylose and 52.6?g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4?g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40?g/L of ethanol and ethanol production capacity of the yeast was 52?g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170?g/L sugar concentrations.  相似文献   

18.
AIMS: To test the suitability of cheese whey powder (CWP) solution for ethanol fermentation and to compare performances of different Kluyveromyces marxianus strains for ethanol fermentation from CWP solution. METHODS AND RESULTS: Batch ethanol fermentation of cheese whey (CW), CWP and lactose solutions with the same initial sugar contents were compared by using two different K. marxianus strains and the CWP solution was found to be the most suitable substrate. CWP solution was fermented to ethanol using three different yeast strains and DSMZ-7239 was found to be the most suitable one yielding the highest rate and extent (3.3%, v/v) of ethanol formation. CONCLUSIONS: CWP solution and K. marxianus strain of DSMZ-7239 were found to be more suitable for ethanol fermentation with the highest ethanol yield when compared with the other substrates and the yeast strains tested. SIGNIFICANCE AND IMPACT OF THE STUDY: CWP can be used as a concentrated form of CW for ethanol fermentations with considerable advantages.  相似文献   

19.
在厌氧条件下, Actinobacillus succinogenes能够利用单糖、双糖和糖醇等碳水化合物发酵生成丁二酸, 其中以山梨醇为碳源时丁二酸的产量最高。代谢流量分析结果表明: 与葡萄糖发酵相比较, 由于代谢系统中积累了更多的NADH, 使得代谢网络关键节点PYR和AcCoA处的代谢流量分配有了较大的变化, 导致更多的碳源流向丁二酸和乙醇, 而乙酸和甲酸的分泌相对减少。  相似文献   

20.
Summary The effect of increased solute concentrations on the fermentation of lactose to ethanol by Kluyveromyces marxianus Y-113 was investigated in batch culture. Elevated concentrations of lactose, maltose, NaCl or ethanol all inhibited the fermentation but to varying extents. Maltose was the least inhibitory of the solutes added while ethanol, and in particular the combination of high ethanol and high lactose concentrations, had the greatest inhibitory action. A maximum concentration of 45–52 g/l ethanol was achieved before growth and ethanol production ceased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号