首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In each right and left buccal ganglia of Aplysia kurodai, we identified 4 premotor neurons impinging on the ipsilateral jaw-closing and -opening motoneurons. Three of them (MA1 neurons) had features of multifunctional neurons. Current-induced spikes in the MA1 neurons produced excitatory junction potentials (EJPs) in the buccal muscle fibers. In addition, tactile stimulation of the buccal muscle surface produced a train of spikes in the MA1 neurons without synaptic input. The other neuron (MA2) had only a premotor function. 2. The MA1 and MA2 neurons had similar synaptic effects on the jaw-closing and -opening motoneurons. Current-induced spikes in the premotor neurons gave rise to monosynaptic inhibitory postsynaptic potentials (IPSPs) in the ipsilateral jaw-closing motoneurons. Simultaneously, spikes in one of the MA1 neurons and the MA2 also gave rise to monosynaptic excitatory postsynaptic potentials (EPSPs) in the ipsilateral jaw-opening motoneuron. 3. The IPSPs and the EPSPs induced by spikes in the premotor neurons were reversibly blocked by d-tubocurarine and hexamethonium, respectively, suggesting that the MA1 and MA2 neurons are cholinergic. 4. When depolarizing and hyperpolarizing current pulses were passed into one premotor neuron, attenuated but similar potential changes were produced in another randomly selected premotor neuron in the same ganglion, suggesting that they are electronically coupled.  相似文献   

2.
Spontaneous and evoked synaptic activity of command neurons for the defensive response of spiracle closing were studied by simultaneous intracellular recording of activity of several identified CNS neurons in snails. Comparison of monosynaptic EPSPs in command neurons evoked by discharges of presynaptic neurons with spontaneous synaptic potentials indicated that the central organization of the defensive reflex is in the form of a two-layered neuron net in which each neuron of the afferent layer possesses a local receptive field, but which overlaps with other afferent neurons. Each neuron of the afferent layer is connected with each neuron of the efferent layer by monosynaptic excitatory connections that differ in efficiency (maximal only with one neuron of the efferent layer). Both receptive fields of neurons of the afferent layer and "fields of efficiency of synaptic connections" are distributed according to the normal law. As a result of this organization the neuron net acquires a new quality: The action of different stimuli leads to the appearance of differently located "spatial excitation profiles" of efferent layer neurons even when this action of the stimulus occurs not at the center of the receptive field.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 26–34, January-February, 1984.  相似文献   

3.
We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal reponses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuation of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.  相似文献   

4.
A structure of synaptic connections between the identified sensory and giant command neurons of Helix lucorum was studied. It was found that EPSPs arising in the giant neuron as responses to single action potentials generation in sensory neuron consist of several monosynaptic and several polysynaptic components having different magnitude, latencies, and plasticity. The latencies of monosynaptic components are determined by different presynaptic terminals' lengths.  相似文献   

5.
Habituation of excitatory synaptic inputs onto identified motor neurons of the locust metathoracic ganglion, driven electrically and by natural stimuli, was examined using intracellular recording. Rapid progressive reduction in amplitude of EPSPs from a variety of inputs onto fast-type motor neurons occurred. The habituated EPSPs were quickly dishabituated by iontophoretic release of octopamine from a microelectrode into the neuropilar region of presumed synaptic action. The zone within which release was effective for a given neuron was narrowly-defined. With larger amounts of octopamine applied at a sensitive site the EPSP became larger than normal, and in many instances action potentials were initiated by the sensitized response. Very small EPSPs onto a motor neuron, which were associated with proprioceptive feedback, and which were originally too small to be detected above the noise, were potentiated to a level of several mV by the iontophoresed octopamine. A DUM neuron (presumed to be octopaminergic) was found, whose direct stimulation was followed by a strong dishabituating and sensitizing action leading to spikes, of inputs to an identified flexor tibiae motor neuron. The action and its time course were closely similar to those evoked by octopamine iontophoresed into the neuropil in the region of synaptic inputs to the motor neuron. It is concluded that DUM (octopaminergic) neurons exert large potentiating actions on central neuronal excitatory synaptic transmission in locusts.  相似文献   

6.
The nature of the synaptic relationship between 7 identified postural interneurons and 5 pairs of superficial motoneurons was examined by obtaining dual intracellular recordings from interneuron-motoneuron pairs in the lobster 2nd abdominal ganglion. For six different interneuron-motoneuron pairs EPSPs recorded from motoneurons occurred with a short (1 to 3 ms) fixed latency following each presynaptic spike recorded from the interneuron. This suggests that there is a monosynaptic relationship between these interneurons and motoneurons. Monosynaptic pathways accounted for 27% of all excitatory connections. Preliminary evidence indicates that the monosynaptic potentials are mediated by an excitatory chemical synapse since: all IPSPs occurred with latencies greater than 5 ms, there was no evidence for electrical coupling, and one of the interneurons produced facilitating PSPs. A majority of all monosynaptic connections were made by two of the flexion producing interneurons (FPIs), 201 and 301. The synaptic outputs of these FPIs were similar in that both made monosynaptic connections with a different bilaterally homologous pair of motoneurons. Both also produced larger EPSPs and more vigorous spiking in contralateral members of the bilateral motoneuron pairs. A previous study demonstrated that interneurons 201 and 301 are the only postural interneurons yet identified that express motor programs indistinguishable from command neurons. Taken together, these results suggest that certain intersegmental interneurons share properties with command neurons and driver neurons, and that there may not be a sharp morphological or functional distinction between these two cell types.  相似文献   

7.
The buccal ganglion of Aplysia contains three morpho-functional groups (A, B, and C) of large cells and two groups (s1 and s2) of small cells. The A cells evoke monosynaptic IPSPs in the B cells. We found that s1 cells can evoke large EPSPs in the A cells, IEPSPs in the B cells, and EIIPSPs in the C cells; several s1 cells are able to evoke all three types of responses. Many s2 cells can evoke these same responses, but only in the A and B cells. Furthermore, the s cells can evoke depolarizing PSPs in other s cells; this relation is often reciprocal. All these responses may also be contralateral. Their monosynaptic nature is shown by the consistent 1:1 relationship with the presynaptic spike, and also by the effects of intracellular tetraethylammonium and of high Mg2+ concentration in the bathing medium. D-tubocurarine reversibly suppresses the I phase of the IEPSP evoked by the s cells in the B cells. All the responses evoked by the s cells undergo depression with repetition. The network formed by all these relations is outlined, and a double relationship proposed between s cells and B cells. By electrophysiological tracing of axonal pathways it is shown that the A cells send axons into the 3rd buccal nerve, the B cells into the 2nd and/or 3rd buccal nerve and in two cases into the redular nerve, and the C cells into the gastro-oesophageal nerve. Spontaneous synaptic activity of the buccal neurons appears to be formed mostly by the described PSPs. Spontaneous firing inside the isolated ganglion corresponds well to the alternate pattern of muscular contractions of the buccal mass.  相似文献   

8.
  • 1.1. A single neuron is found in each buccal ganglion of the giant garden slug, Limax maximus, which is autoactive and has an axon in both the ipsilateral and contralateral salivary nerve.
  • 2.2. This neuron, the bilateral salivary neuron (BSN), is a slow bursting neuron and is presynaptic to some of the secretory acinar cells of the salivary gland.
  • 3.3. Increases in BSN action potential frequency and saliva flow during the generation of feeding motor program are shown, as is the relationship of BSN activity to that of other salivary neurons.
  • 4.4. BSN is affected synaptically by the serotonergic metacerebral giant cell.
  相似文献   

9.
Tonic activity of neurons of the rabbit superior cervical ganglion was studied by intracellular recording. This activity was compared with responses of these same neurons to single stimulation of preganglionic fibers. Neurons of the ganglion were found to have two synaptic inputs — principal and accessory. The principal input consists of one preganglionic fiber, the discharge in which evokes an action potential in the neuron with a high safety factor. The accessory input consists of two or more converging fibers, and the neuron discharges only as a result of summation of EPSPs evoked by activation of these fibers.  相似文献   

10.
Synaptic Integration in Electrically Coupled Neurons   总被引:2,自引:0,他引:2  
Interactions among chemical and electrical synapses regulate the patterns of electrical activity of vertebrate and invertebrate neurons. In this investigation we studied how electrical coupling influences the integration of excitatory postsynaptic potentials (EPSPs). Pairs of Retzius neurons of the leech are coupled by a nonrectifying electrical synapse by which chemically induced synaptic currents flow from one neuron to the other. Results from electrophysiology and modeling suggest that chemical synaptic inputs are located on the coupled neurites, at 7.5 μm from the electrical synapses. We also showed that the space constant of the coupled neurites was 100 μm, approximately twice their length, allowing the efficient spread of synaptic currents all along both coupled neurites. Based on this cytoarchitecture, our main finding was that the degree of electrical coupling modulates the amplitude of EPSPs in the driving neurite by regulating the leak of synaptic current to the coupled neurite, so that the amplitude of EPSPs in the driving neurite was proportional to the value of the coupling resistance. In contrast, synaptic currents arriving at the coupled neurite through the electrical synapse produced EPSPs of constant amplitude. This was because the coupling resistance value had inverse effects on the amount of current arriving and on the impedance of the neurite. We propose that by modulating the amplitude of EPSPs, electrical synapses could regulate the firing frequency of neurons.  相似文献   

11.
The motor program that drives the swimming behavior of the marine mollusk Tritonia diomedea is generated by three interneuronal populations in the cerebral ganglia. One of these populations, the pair of C2 neurons, is shown to also exert powerful synaptic actions upon most cells in the contralateral pedal ganglion. Intracellular staining with Co2+ showed that the C2 neurons projected to the contralateral pedal ganglion as a single unbranched axon, and nearly all contralateral pedal neurons received monosynaptic input from C2. Orthodromic stimulation of most peripheral nerves caused monosynaptic excitation of C2 by afferent sensory cells and, in some cases, monosynaptic inhibition from an unidentified source. C2 neurons produced four types of postsynaptic potential (PSP) on pedal neurons: (1) a fast, Cl?-mediated inhibition (FIPSP); (2) a fast, Na+-mediated excitation (FEPSP); (3) a slow, K+-mediated inhibition (SIPSP); and (4) a slow, conductance-decrease excitation (SEPSP). All four could be recorded simultaneously in some pedal neurons. The C2 neurons appear to be high-order, multiaction neurons involved in both the generation of a complex motor program and the coordination of ancillary neuronal activity.  相似文献   

12.
We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal responses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuations of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.  相似文献   

13.
Recently, in the marine molluscTritonia, a family of three peptides (TPep-NLS,-PLS,-PAR) from identified pedal ganglion neurons has been characterized and shown to regulate ciliary beat frequency in epithelia and isolated cells of the molluscan foot. In this study, using an antiserum raised against TPep-NLS, immunofluorescent labelling was observed in specific nerve cell bodies and axons in the buccal ganglia ofTritonia, as well as in axons leading to and innervating the salivary ducts, salivary glands, oesophagus and foregut. This pattern of innervation suggests that buccal ganglion neurons containing TPep control the beating rate of ciliated cells in feeding organs. Accordingly, TPeps were introduced to isolated ciliated salivary ducts. It was found that TPeps and serotonin increased the ciliary beat frequency of cells of the salivary duct similarly; other peptides (such as APep fromAplysia) had no such effect. Threshold sensitivity both for TPeps and serotonin was approximately 10−8 M, with maximal response occurring above 10−5 M. Taken together, these structural and physiological results suggest that TPep-like peptides are present in the salivary and other feeding organs ofTritonia and are involved in the regulation of salivary transport.  相似文献   

14.
In experiments on the subpharyngeal complex of the Helix ganglia, we found an excitatory monosynaptic input to the pacemaker PPa2 neuron from an unidentified cell of the visceral ganglion and a polysynaptic inhibitory influence of another unidentified neuron of this ganglion on the PPa1 cell. In addition, we revealed three pairs of neurons synaptically connected with each other (excitatory connections) in the visceral ganglion. In the case where we used high-frequency (11 sec−1) stimulation of presynaptic elements, synaptic transmission to the PPa2 neuron demonstrated the greatest efficiency and stability. Neirofiziologiya/Neurophysiology, Vol. 39, No. 1, pp. 32–36, January–February, 2007.  相似文献   

15.
Summary The metacerebral giant (MCG) neurons of the molluskPleurobranchaea have been analyzed using a wide range of methods (cobalt staining, histochemical, biophysical and electrophysiological) on several types of preparations (isolated nervous systems, semi-intact preparations, and behaving whole-animal preparations). The MCG is serotonergic. The bilaterally-symmetrical neurons have somata in the anterior brain. Each MCG neuron sends an axon out the ipsilateral mouth nerve of the brain and also into the ipsilateral cerebrobuccal connective which descends to the buccal ganglion. The descending axon sends one or more branches out most buccal nerves.The MCG makes mono- and polysynaptic chemical excitatory and inhibitory connections with identified feeding motoneurons in the buccal ganglion. In quiescent preparations (isolated CNS or semi-intact), MCG stimulation caused coordinated eversion activity followed immediately by withdrawal activity. During an ongoing feeding rhythm (spontaneous output or induced by stimulation of the stomatogastric nerve), tonic stimulation of one or both MCG's at physiological discharge frequencies typically caused a significant increase in the frequency of the rhythm, and usually emphasized the eversion component at the expense of the withdrawal component. Phasic stimulation of one or both MCG's at physiological discharge frequencies and in normal discharge patterns (bursts; see below) accelerated and phaselocked the feeding rhythm.The MCG neurons receive synaptic feedback from identified neurons in the feeding network. Brain motoneurons are reciprocally coupled with the MCG by non-rectifying electrical synapses, while buccal ganglion neurons (the previously identified corollary discharge neurons) inhibit the MCG. Recordings from the MCG during cyclic feeding show that it discharges cyclically and that its membrane potential oscillates in phase with the feeding rhythm, presumably reflecting the above synaptic feedback. Two biophysical properties of the MCG membrane, namely anomalous rectification and postspike conductance increase, are presumed to contribute to the MCG's oscillatory activity.Chemosensory (food stimuli) and mechanosensory inputs from the oral veil excite the MCG's. In whole-animal preparations, these sensory inputs typically cause discharge in the MCG's and other descending neurons, accompanied by feeding motor output.The data collectively suggest that the MCG's ofPleurobranchaea are members of a population of neurons that normally function to command (i.e., arouse, initiate and sustain) the rhythmic feeding behavior. The demonstrated central feedback to the MCG is presumed to amplify these command functions.Supported by an NIH Postdoctoral Fellowship (1 F22 NS00511) to R.G. and NIH Research Grants NS 09050 and MH 23254 to W.J.D. We thank Kathryn H. Britton for histological assistance. We also thank Mark P. Kovac, who produced the records of Figures 8 and 18, for permission to reproduce them here.  相似文献   

16.
Summary Mutant first instar cockroaches (Periplaneta americana) with supernumerary filiform hair sensilla on their cerci were used to study the effects of cell body position on axonal morphology and synaptic connections. The wild-type cercus has two hairs, one lateral (L) and the other medial (M), each with an underlying sensory neuron. Silver-intensified cobalt fills show that the supernumerary lateral neuron (SIN) in the mutant has the same shape of arborization as L, and electrophysiological recording shows that it forms synaptic connections with the same subset of giant interneurons (GIs) as L in the terminal ganglion: GI3 and GI6. The supernumerary medial neuron (SuM) has the same axonal morphology as M and synapses with the same GIs as does M: ipsilateral GIs 1 and 2 and contralateral GIs 1, 2, 3, 5 and 6. In 0.1% of approximately 8000 animals screened, a supernumerary hair arose on the cereal midline (C hair). The C neuron sends its axon to the CNS in the same branch of the cereal nerve as the L and SIN, and has a similar arborization. However, the C neuron forms synapses with the same GIs as do M and SuM. Electron microscopy of horseradish peroxidase-injected neurons was used to confirm that the C afferent forms a monosynaptic connection to GI2. It was concluded that the position of the sensory neuron cell body does control its axonal morphology and synaptic connectivity, but that these characteristics are produced by independent mechanisms.Abbreviations GI giant interneuron - L lateral - M medial - SI Space Invader - SuM supernumerary medial - C cereal midline  相似文献   

17.
The prey capture phase of feeding behavior in the pteropod molluscClione limacina consists of an explosive extrusion of buccal cones, specialized oral appendages which are used to catch the prey, and significant acceleration of swimming. Several groups of neurons which control different components of prey capture behavior inClione have been previously identified in the CNS. However, the question of their coordination in order to develop a normal behavioral reaction still remains open. We describe here a cerebral interneuron which has wide-spread excitatory and inhibitory effects on a number of neurons in the cerebral and pedal ganglia, directed toward the initiation of prey capture behavior inClione. This bilaterally symmetrical neuron, designated Cr-PC (Cerebral interneuron initiating Prey Capture), produced monosynaptic activation of Cr-A motoneurons, which control buccal cone extrusion, and inhibition of Cr-B and Cr-L motoneurons, whose spike activities maintain buccal cones in a withdrawn position inside the head in non-feeding animals. In addition, Cr-PC produced monosynaptic activation of a number of swim motoneurons and interneurons of the swim central pattern generator (CPG) in the pedal ganglia, pedal serotonergic Pd-SW neurons involved in a peripheral modulation of swimming and the serotonergic Heart Excitor neuron.  相似文献   

18.
Cerebral neuron C-PR is thought to play an important role in the appetitive phase of feeding behavior ofAplysia. Here, we describe the organization of input and output pathways of C-PR. Intracellular dye fills of C-PR revealed extensive arborization of processes within the cerebral and the pedal ganglia. Numerous varicosities of varying sizes may provide points of synaptic inputs and outputs.Blocking polysynaptic transmission in the cerebral ganglion eliminated the sensory inputs to C-PR from stimuli applied to the rhinophores or tentacles, indicating that this input is probably mediated by cerebral interneurons. Identified cerebral mechanoafferent sensory neurons polysynaptically excite C-PR. Stimulation of the eyes and rhinophores with light depresses C-PR spike activity, and this effect also appears to be mediated by cerebral interneurons.C-PR has bilateral synaptic actions on numerous pedal ganglion neurons, and also has effects on cerebral neurons, including the MCC, Bn cells, CBIs and the contralateral C-PR. Although the somata of these cerebral neurons are physically close to C-PR, experiments using high divalent cation-containing solutions and cutting of various connectives indicated that the effects of C-PR on other cerebral ganglion neurons (specifically Bn cells and the MCC) are mediated by interneurons that project back to the cerebral ganglion via the pedal and pleural connectives. The indirect pathways of C-PR to other cerebral neurons may help to ensure that consummatory motor programs are not activated until the appropriate appetitive motor programs, mediated by the pedal ganglia, have begun to be expressed.  相似文献   

19.
The characteristics of a pair of identified neurons found in the cerebral ganglia of the gastropod mollusc Philine aperta have been examined. Because they appear to contain serotonin, and since they probably also use serotonin as a neurotransmitter, these neurons were named the serotonergic cerebral neurons (SCNs). Each SCN sent an axon out of the ipsilateral cerebro-buccal connective to the buccal ganglia. The SCNs also had extensive projections to all the ipsilateral, and most of the contralateral, buccal nerve trunks. Stimulating the SCNs produced the hyperpolarization of a pair of identified buccal ganglion mechano-sensory neurons (the S-cells), and had an excitatory action on the electrical activity of acinar cells of the salivary glands. A comparison of the properties of the Philine SCNs with those of similar serotonin-containing cerebral ganglion neurons in other gastropod molluscs provides evidence of homology with these neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号