首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of germanium on the secretion of siliceous spicules by the freshwater sponge Spongilla lacustris was investigated by exposing germinating and hatching gemmules to varying concentrations of germanium (Ge) in the presence of silicon (Si). Results were analyzed quantitatively and qualitatively and demonstrate that a [Ge]/[Si] (= molar ratio) of 1.0 completely inhibits silicon deposition. Intermediate ratios (0.5, 0.1, 0.01) which are permissive to spicule appearance result in fewer, shorter, and thinner spicules, in proportionately fewer microscleres, and in short bulbous megascleres. The size of the bulb increases with increasing [Ge]/[Si], while the length of the bulbous megascleres decreases with increasing [Ge]/[Si]. Microscleres do not demonstrate these graded responses suggesting that they are secreted in an all or none manner. Swellings produced in pond water and bulbs produced in germanium appear to decrease in size with time indicating a spreading of the accumulated silica. The effect of germanium on spicule secretion can be partially explained by its ability to uncouple the growth in length of the axial filament from the growth of the surrounding silicalemma. Under these conditions excess silicalemma is produced in which silica accumulates as bulbs in short spicules. Continuous exposure to Ge is necessary to produce this altered morphology. It is conjectured that the bulbs may be retained due to an inhibition of spreading. which in turn may be caused by the incorporation of germanium into the silica.  相似文献   

2.
The skeleton of demosponges is built of spicules consisting of biosilica. Using the primmorph system from Suberites domuncula, we demonstrate that silicatein, the biosilica-synthesizing enzyme, and silicase, the catabolic enzyme, are colocalized at the surface of growing spicules as well as in the axial filament located in the axial canal. It is assumed that these two enzymes are responsible for the deposition of biosilica. In search of additional potential structural molecules that might guide the mineralization process during spiculogenesis to species-specific spicules, electron microscopic studies with antibodies against galectin and silicatein were performed. These studies showed that silicatein forms a complex with galectin; the strings/bundles of this complex are intimately associated with the surface of the spicules and arranged concentrically around them. Collagen fibers are near the silactein/galectin complexes. The strings/bundles formed from silicatein/galectin display a lower degree of orientation than the collagen fibers arranged in a highly ordered pattern around the spicules. These data indicate that species-specific formation of spicules involves a network of (diffusible) regulatory factor(s) controlling enzymatic silica deposition; this mineralization process proceeds on a galectin/collagen organic matrix.  相似文献   

3.
The skeleton of the siliceous sponges (Porifera: Hexactinellida and Demospongiae) is supported by spicules composed of bio-silica. In the axial canals of megascleres, harboring the axial filaments, three isoforms of the enzyme silicatein (-alpha, -beta and -gamma) have been identified until now, using the demosponges Tethya aurantium and Suberites domuncula. Here we describe the composition of the proteinaceous components of the axial filament from small spicules, the microscleres, in the demosponge Geodia cydonium that possesses megascleres and microscleres. The morphology of the different spicule types is described. Also in G. cydonium the synthesis of the spicules starts intracellularly and they are subsequently extruded to the extracellular space. In contrast to the composition of the silicateins in the megascleres (isoforms: -alpha, -beta and -gamma), the axial filaments of the microscleres contain only one form of silicatein, termed silicatein-alpha/beta, with a size of 25kDa. Silicatein-alpha/beta undergoes three phosphorylation steps. The gene encoding silicatein-alpha/beta was identified and found to comprise the same characteristic sites, described previously for silicateins-alpha or -beta. It is hypothesized, that the different composition of the axial filaments, with respect to silicateins, contributes to the morphology of the different types of spicules.  相似文献   

4.
The skeletal elements (spicules) of the demosponge Lubomirskia baicalensis were analyzed; they are composed of amorphous, non-crystalline silica, and contain in a central axial canal the axial filament which consists of the enzyme silicatein. The axial filament, that orients the spicule in its longitudinal axis exists also in the center of the spines which decorate the spicule. During growth of the sponge, new serially arranged modules which are formed from longitudinally arranged spicule bundles are added at the tip of the branches. X-ray analysis revealed that these serial modules are separated from each other by septate zones (annuli). We describe that the longitudinal bundles of spicules of a new module originate from the apex of the earlier module from where they protrude. A cross section through the oscular/apical-basal axis shows that the bundle rays are organized in a concentric and radiate pattern. High resolution magnetic resonance microimaging studies showed that the silica spheres of the spicules in the cone region contain high amounts of 'mobile' water. We conclude that the radiate accretive growth pattern of sponges is initiated in the apical region (cones) by newly growing spicules which are characterized by high amounts of 'mobile' water; subsequently spicule bundles are formed laterally around the cones.  相似文献   

5.
The process of microsclere secretion was examined in vivo through glass coverslip implants in three species of the genus Mycale from São Sebastião channel, southeastern Brazil: Mycale (Aegogropila) angulosa, Mycale (Arenochalina) laxissima, and Mycale (Carmia) microsigmatosa. All three species adhered well to coverslips and developed normally through at least 2 weeks. Similar experiments with different species (Cinachyrella alloclada, Amphimedon viridis, Haliclona melana, and Aplysina caissara) were also successful with one exception (the cartilaginous Chondrilla nucula), indicating that the method can be applied to most demosponges. Microsclerocyte size varied according to the type of microsclere secreted, but all were elongated to fusiform and had small, anucleolated nuclei. Spicules were transported by microsclerocytes alone, without any other cell type ("helper cells") involved. Secretion of a microsclere was performed by a single sclerocyte. Although some axial filaments were found free in the mesohyl, all microsclere secretion in these animals was fully intracellular. Normal axial filaments were observed in most types of microscleres of the Mycale species (sigmas, toxas, and microxeas). Timed observations of sclerocytes suggest that immature spicules with the aspect of short straight rods with thick ends might be the precursors of the anisochelae. Observed differences in the size versus number of toxa secreted may indicate either the presence of two distinct subpopulations of toxa-producing microsclerocytes or that the initial number of axial filaments at the beginning of silica deposition may determine the final size of the spicules. Although other microscleres such as sigmas and chelae are secreted in a one cell-one spicule basis, several toxas and microxeas can be secreted simultaneously in a single cell.  相似文献   

6.
Attempts to understand the intricacies of biosilicification in sponges are hampered by difficulties in isolating and culturing their sclerocytes, which are specialized cells that wander at low density within the sponge body, and which are considered as being solely responsible for the secretion of siliceous skeletal structures (spicules). By investigating the homosclerophorid Corticium candelabrum, traditionally included in the class Demospongiae, we show that two abundant cell types of the epithelia (pinacocytes), in addition to sclerocytes, contain spicules intracellularly. The small size of these intracellular spicules, together with the ultrastructure of their silica layers, indicates that their silicification is unfinished and supports the idea that they are produced "in situ" by the epithelial cells rather than being incorporated from the intercellular mesohyl. The origin of small spicules that also occur (though rarely) within the nucleus of sclerocytes and the cytoplasm of choanocytes is more uncertain. Not only the location, but also the structure of spicules are unconventional in this sponge. Cross-sectioned spicules show a subcircular axial filament externally enveloped by a silica layer, followed by two concentric extra-axial organic layers, each being in turn surrounded by a silica ring. We interpret this structural pattern as the result of a distinctive three-step process, consisting of an initial (axial) silicification wave around the axial filament and two subsequent (extra-axial) silicification waves. These findings indicate that the cellular mechanisms of spicule production vary across sponges and reveal the need for a careful re-examination of the hitherto monophyletic state attributed to biosilicification within the phylum Porifera.  相似文献   

7.
Despite its inherent mechanical fragility, silica is widely used as a skeletal material in a great diversity of organisms ranging from diatoms and radiolaria to sponges and higher plants. In addition to their micro- and nanoscale structural regularity, many of these hard tissues form complex hierarchically ordered composites. One such example is found in the siliceous skeletal system of the Western Pacific hexactinellid sponge, Euplectella aspergillum. In this species, the skeleton comprises an elaborate cylindrical lattice-like structure with at least six hierarchical levels spanning the length scale from nanometers to centimeters. The basic building blocks are laminated skeletal elements (spicules) that consist of a central proteinaceous axial filament surrounded by alternating concentric domains of consolidated silica nanoparticles and organic interlayers. Two intersecting grids of non-planar cruciform spicules define a locally quadrate, globally cylindrical skeletal lattice that provides the framework onto which other skeletal constituents are deposited. The grids are supported by bundles of spicules that form vertical, horizontal and diagonally ordered struts. The overall cylindrical lattice is capped at its upper end by a terminal sieve plate and rooted into the sea floor at its base by a flexible cluster of barbed fibrillar anchor spicules. External diagonally oriented spiral ridges that extend perpendicular to the surface further strengthen the lattice. A secondarily deposited laminated silica matrix that cements the structure together additionally reinforces the resulting skeletal mass. The mechanical consequences of each of these various levels of structural complexity are discussed.  相似文献   

8.
Sponge tissue often contains two structural components in high concentrations: spicules of silica, and refractory fibers of protein (spongin). Some terrestrial plants contain analogous structures, siliceous inclusions and refractory lignins, that have been demonstrated to deter herbivory. We performed feeding experiments with predatory reef fish to assess the deterrent properties of the structural components of three common Caribbean demosponges, Agelas clathrodes, Ectyoplasia ferox, and Xestospongia muta. The concentrations of spicules and spongin in the tissues varied widely between the three species, but when assayed at their natural volumetric concentrations, neither spicules (all three species assayed) nor the intact spiculated spongin skeleton (A. clathrodes and X. muta assayed) deterred feeding by reef fish in aquarium or field assays using prepared foods of a nutritional quality similar to, or higher than, that of sponge tissue. Spicules deterred feeding in aquarium assays when incorporated into prepared foods of a nutritional quality lower than that of sponge tissue (15–19 times less protein), but spiculated spongin skeleton was still palatable, even in prepared foods devoid of measurable protein, and even though spicules embedded in spongin were oriented in their natural conformation. Based on comparisons of the nutritional qualities of the tissues of the three sponge species and of the prepared foods, sponge tissue would have to be much lower in food value (5 times less protein or lower) for spicules to provide an effective defense, and spicules in combination with the spongin skeleton would be unlikely to provide an effective defense regardless of the nutritional quality of the tissue. Unlike terrestrial plants, marine sponges may use silica and refractory fibers solely for structural purposes.  相似文献   

9.
Botting, J.P., Muir, L.A., Xiao, S., Li, X. & Lin, J.‐P. 2012: Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica sp. from the Early Cambrian of South China. Lethaia, Vol. 45, pp. 463–475. The relationships of the extant sponge classes, and the nature of the last common ancestor of all sponges, are currently unclear. Early sponges preserved in the fossil record differ greatly from extant taxa, and therefore information from the fossil record is critical for testing hypotheses of sponge phylogenetic relationships that are based on modern taxa. New specimens of the enigmatic sponge Lenica sp., from the Early Cambrian Hetang Biota of South China, exhibit an unusual spicule structure. Each spicule consists of a siliceous core with an axial canal, an organic outer layer and a middle layer interpreted to have been originally calcium carbonate. This finding confirms previous work suggesting the existence of biminerallic spicules in early sponges. Combined with data from other early sponges, the new findings imply that the two fundamental spicule structures of modern sponges were derived from a compound, biminerallic precursor. Spicules are therefore homologous structures in Calcarea and Silicea, and if sponges are paraphyletic with respect to Eumetazoa, then spicules may also have been a primitive feature of Metazoa. □Calcarea, Early Cambrian, Hetang Biota, phylogeny, Silicea, taphonomy.  相似文献   

10.
深海六放海绵大骨针的结构与特性   总被引:4,自引:0,他引:4  
在海绵动物(多孔动物)中,六放海绵和寻常海绵为硅质骨骼.生活在深海(1 000 m)中的六放海绵是最古老的海绵动物,其中间单根海绵和春氏单根海绵有长达3 m的骨针,是地球上最长的生物硅结构.利用电子显微技术观测, 这些直径达8 mm的巨大根须骨针具有同心层状结构,其横截面显示明显的构造分界:中间为含有轴丝的轴管,外围是一50-150 μm厚的轴筒,最外面为区状区(300-500层,每层厚度3-5 μm).生物化学研究显示其主要的蛋白质为35 kD大分子,另外,还检测到23-24 kD 多肽,可能是硅蛋白相关蛋白.依据现有的红血球凝聚活性,从骨针提取物中也检测到了凝集素.由电子探针获得其化学成分主要为Si,K和Na.此外,骨针的光传输实验表明,该巨大根须骨针用作光纤可传输600 nm至1 400 nm范围的光,而滤掉小于600 nm的光(类似高通滤波器)和大于1 400 nm 的红外光(类似低通滤波器).另外,从六放海绵的空囊泡沫海绵中分离出一个基因并确证了其推导的编码蛋白序列,该蛋白编码一个光裂合酶相关蛋白,蛋白相似性比较结果显示属于光裂合酶相关蛋白中多细胞动物隐色素一类.基于以上数据给出了六放海绵硅质骨针形成的示意图.另外,由单根海绵骨针可作为波导传输光/电和/或化学信号,推断在海绵动物中有类似神经系统的网络系统[动物学报 53(3):557-569,2007].  相似文献   

11.
12.
The siliceous sponge Monorhaphis chuni (Hexactinellida) synthesizes the largest biosilica structures on earth (3 m). Scanning electron microscopy has shown that these spicules are regularly composed of concentrically arranged lamellae (width: 3–10 μm). Between 400 and 600 lamellae have been counted in one giant basal spicule. An axial canal (diameter: ~2 μm) is located in the center of the spicules; it harbors the axial filament and is surrounded by an axial cylinder (100–150 μm) of electron-dense homogeneous silica. During dissolution of the spicules with hydrofluoric acid, the axial filament is first released followed by the release of a proteinaceous tubule. Two major proteins (150 kDa and 35 kDa) have been visualized, together with a 24-kDa protein that cross-reacts with antibodies against silicatein. The spicules are surrounded by a collagen net, and the existence of a hexactinellidan collagen gene has been demonstrated by cloning it from Aphrocallistes vastus. During the axial growth of the spicules, silicatein or the silicatein-related protein is proposed to become associated with the surface of the spicules and to be finally internalized through the apical opening to associate with the axial filament. Based on the data gathered here, we suggest that, in the Hexactinellida, the growth of the spicules is mediated by silicatein or by a silicatein-related protein, with the orientation of biosilica deposition being controlled by lectin and collagen. Carsten Eckert was previously with the Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany. The collagen sequence from Aphrocallistes vastus reported here, viz., [COL_APHRO] APHVACOL (accession number AM411124), has been deposited in the EMBL/GenBank data base. This work was supported by grants from the European Commission, the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin), the National Natural Science Foundation of China (grant no. 50402023), and the International Human Frontier Science Program.  相似文献   

13.
The dorid nudibranchs Peltodoris lentiginosa and Archidoris odhneri were found on glass sponges (Porifera, Hexactinellida) during remotely operated vehicle surveys of three reefs in the Strait of Georgia, British Columbia, Canada. Eight nudibranchs were sampled from 2009 to 2011. Identification of sponge spicules found in their gut and fecal contents confirmed the nudibranchs to be predators of the reef‐forming hexactinellids Aphrocallistes vastus and Heterochone calyx, as well as of the demosponge Desmacella austini, which encrusts skeletons of the glass sponges. Four of five nudibranchs dissected for gut content analysis had stomachs containing sponge spicules. Counts from high‐definition video footage taken during systematic surveys done in 2009 showed that nudibranchs were found in only two of the three glass sponge reefs. These data provide the first quantitative evidence of a molluscan predator on glass sponges found outside of Antarctica, and establish the first trophic link between glass sponges and their associated community of animals in a sponge reef ecosystem on the western Canadian continental shelf.  相似文献   

14.
皖南早寒武世荷塘组海绵骨针化石   总被引:10,自引:1,他引:9  
本文报道皖南休宁县早寒武世荷塘组黑色页岩中产出的海绵骨针化石组合,这些海绵骨针化石具有较高的丰度和分异度,它们以二轴四射针、T型针、三轴六射针和三轴五射针为主。骨针形态完整,并保存了内部轴丝、轴管以及同心圈层等微细构造。黄铁矿化在化石的保存中起了重要的作用,化石产出的时代可能为梅树村阶至筇竹寺阶(Tommotian-Atdabanian),这个化石组合证实了海绵动物在早寒武世已开始迅速分异。  相似文献   

15.
Marine sponges often harbor an abundance of associated organisms. We characterized mesofauna associated with the common tropical sponge Amphimedon viridis, and then tested whether physical (spicules) or chemical (lipophilic or hydrophilic extracts) properties of this sponge provide a prospective refuge for mesofauna from fish predation. Sponge analyses revealed a moderately diverse and numerically rich community of sponge-associated mesofauna comprised primarily of mesocrustaceans (82% of total fauna). Eighty-nine percent of these were amphipods, but smaller numbers of tanaids, decapods, and isopods also occurred. Quantitative sampling of outer surfaces and interstices of fifteen A. viridis yielded a total mean ± 1 SD density of sponge–associated mesofauna of 53 ± 9.3 individuals per 100 cm3 wet sponge tissue. Among the numerically dominant amphipods, 65% occurred on outer sponge surfaces where they are most vulnerable to fish predators. We evaluated whether A. viridis provides a prospective refuge from predation by assessing the palatability of this sponge to the sympatric generalist pinfish Lagodon rhomboides. When presented small (2 mm) bite-size pieces of whole sponge tissue, similar in size to what fish might incidentally ingest should they attempt to consume sponge-mesofaunal associates, pinfish displayed strong feeding deterrence. Alginate food pellets containing tissue-level concentrations of sponge spicules caused a weak but significant deterrent response. In contrast, alginate pellets containing tissue-level concentrations of either lipophilic or hydrophilic extracts of A. viridis were highly deterrent to pinfish. Thus, chemical, and to a considerably lesser degree, physical defenses (spicules) may contribute to this sponge serving as a protective refuge for associated mesofauana.  相似文献   

16.
Summary The complex, erupting nematocyst batteries of Nanomia cara are described. In addition to the cnidoband, the battery has a central axis containing longitudinal muscles and nerves that run right through to the terminal filament. In addition, an elastic strand lies coiled within the battery. After eruption of the battery, this strand keeps the prey attached to the tentacle. The strand bears hook-like spicules, equipped with barbs that project beyond the surface. Electron microscopy shows that the elastic strand is a mesogloeal structure tunnelled through and through with cellular processes deriving from both ectoderm and endoderm and that the spicules lie in cellular pockets in the interior of the elastic strand. There is nothing in the structure of the spicules or their cellular sheaths to suggest an origin from nematocysts. Energy dispersive X-ray microanalysis shows strong peaks for calcium and for phosphorus in the spicules, indicating that the mineral present in them is an apatite. An organic matrix is also found in the form of fine filaments and a granular axial structure. The spicules are arranged in a linear series along the elastic strand showing progressive increase in size and structural elaboration.  相似文献   

17.
Lake Baikal harbors the largest diversity of sponge species [phylum Porifera] among all freshwater biotopes. The abundantly occurring species Lubomirskia baicalensis was used to study the seasonal silicatein metabolism; the spicules of this species have an unusually thick axial filament, consisting of silicatein, which remains constant in diameter during their growth. In the course of maturation, the size of the silicic acid shell grows, until the final diameter of the spicules of about 8 microm is reached. The seasonal content of silicatein was assessed by use of antibodies raised against silicatein; they stained specifically the axial filaments. In addition we determined, by application of the enzyme-linked immunosorbent assay system, that the proteinaceous content of the spicules, the silicatein, increases from spring to late summer by 8-fold. As molecular markers to quantify the seasonal changes in expression levels of genes coding for proteins/enzymes, the genes for the calumenin-like protein and the kinesin-related protein, were selected. The expression of calumenin-like gene, involved in the intracellular signaling, is highest during September, whereas the expression of the kinesin-related protein does not change during the annual course. These results suggest that the highest metabolic activity of L. baicalensis occurs in late summer (September), in parallel with the highest accumulation of silicatein, a structural protein/enzyme of the spicules.  相似文献   

18.
This research shows the results of an analysis of siliceous spicules found in sediment cores collected in Lake Trasimeno (Umbria, Italy), a shallow lake that experienced an important water level lowering during the last century. A morphological analysis of sedimentary sponge records revealed that the spicules accumulated in the lake sediments over the last 150 years are attributable to Ephydatia fluviatilis, the only sponge species found in the lake in recent years. The stratigraphic analysis of the cores showed that the abundance and size of the sponge spicules (megascleres) have remarkably decreased, suggesting that a significant depletion of the sponge fauna occurred, particularly during the first half of the twentieth century. A correlation analysis has identified morpho-hydrological and related variables (the theoretical fraction of lake surface subjected to resuspension and the amount of total suspended solids) as the most significant factors explaining the change in density of sponge spicules. Two ecological explanations of the sponge decline are proposed, based on the sensitivity of the sponge both to the availability of suitable hard substrata for colonization, and to the amount of wind-resuspended solids. One-ended sigmoid response curves were obtained by regression and corresponding transfer functions were derived, which allow the mean water depth of the lake and total suspended solids to be inferred from spicule density records. The results support the use of sponge spicules as a paleohydrological and paleoecological proxy, application of which appears particularly promising for shallow-water systems.  相似文献   

19.
Exceptionally well‐preserved specimens of the reticulosan sponge Cyathophycus loydelli from the Sandbian (Late Ordovician) Llanfawr Mudstones Formation of Llandrindod, Waes, UK, have been examined using scanning electron microscopy (SEM). The specimens include exquisitely detailed pyritized spicules, and granular pyritization of surrounding soft tissues. Spicules frequently show axial canals of diameter similar to those of modern siliceous sponges, with hexagonal symmetry typical of modern demosponges rather than hexactinellids. In one case, the axial filament is also preserved. The largest spicules (ray diameter >20 μm) show a complex structure, with a laminar external region similar to that of the extant hexactinellid Monorhaphis. Some spicules preserve sub‐micron detail of the spicule surface, resembling the reticulate collagenous sheath of Monorhaphis. The hexagonal symmetry of the canal confirms that at least some Reticulosa are not crown‐group hexactinellids, but stem‐group Hexactinellida or Demospongea, or stem‐group Silicea. This suggests that a square canal is a sufficient diagnostic feature of total‐group Hexactinellida, but that hexagonal canals were more widely distributed among Early Silicea and were probably not restricted to demosponges. Alternatively, comparison with the structure of modern verongiid fibres suggests that these may be homologous with the outer layers of Cyathophycus spicules, and Cyathophycus may instead be a stem‐group demosponge. The preserved detail of the surface layer shows that pyritization can preserve certain material with extraordinarily fine resolution.  相似文献   

20.
The new calcisponges Regispongia fluegeli n. sp., and Iranospongia circulara n. gen. n. sp., are described from central Iran. These are the first heteractinid sponges reported from the Permian of the region. These wewokellid sponges are large, irregularly cylindrical forms with a distinct axial spongocoel. The calcareous spicular skeletons of both taxa have been overgrown and are recrystallized. However, the preserved skeleton of Regispongia fluegeli does include large polyactines in the main endosomal layer and small octactines and possibly other polyactine spicules in both the relatively massive dermal layer and the distinct, delicately spiculed, gastral layer. Iranospongia is characterized by a discontinuous ring of vertical exhalant canals interior to the dense dermal layer, and by an interior skeleton net that includes common coarse vertical fibers. Individual spicules in Iranospongia are commonly obscured, but locally some remnants of possible polyactines occur in outer parts of the skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号