首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Phosphate inhibited endogenous as well as 1-aminocyclopropane-1-carboxylic acid (ACC)-stimulated ethylene synthesis in slices of tomato fruit, segments of carrot root and pea hypocotyls. ACC concentrations of up to 10 mol m?3 did not overcome this inhibition. Phosphate inhibited the conversion of 14C ACC to ethylene in tomato fruit and vegetative tissue. Enzymatic conversion of ACC to ethylene by pea seedling homogenate was also inhibited by phosphate with a linear concentration dependency. The formation of ACC from S-adenosylmethionine (SAM) by extracts of pink tomatd fruit was slightly, but not significantly, affected by phosphate. However, the SAM to ACC conversion was greater when extracts from tomato fruit were made in phosphate rather than in HEPES-KOH buffer. Non-enzymatic ethylene synthesis from ACC in a model system was stimulated by phosphate. We suggest that phosphate is an inhibitor of ethylene biosynthesis in higher plants and that one site of its control is the conversion of ACC to ethylene.  相似文献   

2.
The rhizobitoxine analog, L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid (Ro), which effectively inhibits ethylene production in apple (Malus domestica Borkh.) and other tissues at concentrations at about 68 micromolar, inhibited ethylene production by about 50 to 70% in green tomato (Lycopersicon esculentum Mill.) fruit slices but only by about 15% in pink and ripe tomato tissue slices. Ethylene production in climacteric-rise and postclimacteric avocado slices was likewise relatively insensitive to 68 micromolar Ro. At 340 micromolar Ro, inhibition of ethylene production increased up to 50% in pink tomato slices, whereas 680 micromolar Ro was required to inhibit ethylene production by 30% in avocado slices. Incorporation of 14C from [14C]methionine into ethylene in green and pink tomato tissues was inhibited by Ro to about the same extent as inhibition of total ethylene production. Results thus far are inconclusive as to the mechanism of Ro resistance in tomato and avocado tissues. At 1 millimolar, free radical scavengers such as benzoate, propyl gallate, nordihydroguaiaretic acid, and to a lesser extent, eugenol, inhibited ethylene production in both Ro-sensitive (green tomato and apple) tissues and Ro-resistant (pink tomato and avocado) tissues. Therefore, free radical steps are suggested in the ethylene-forming systems.  相似文献   

3.
Experiments were carried out to evaluate the effect of glucose on ripening and ethylene biosynthesis in tomato fruit (Lycopersicon esculentum Mill.). Fruit at the light-red stage were vacuum infiltrated with glucose solutions post-harvest and changes in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC, ACC oxidase, and ethylene production monitored over time. ACC oxidase activity was also measured in pericarp discs from the same fruits that were treated either with glucose, fructose, mannose, or galactose. While control fruit displayed a typical peak of ethylene production, fruit treated with glucose did not. Glucose appeared to exert its effect on ethylene biosynthesis by suppressing ACC oxidase activity. Fructose, mannose, and galactose did not inhibit ACC oxidase activity in tomato pericarp discs. Glucose treatment inhibited ripening-associated colour development in whole fruit. The extent of inhibition of colour development was dependent upon the concentration of glucose. These results indicate that glucose may play an important role in ethylene-associated regulation of fruit ripening.  相似文献   

4.
Tomato fruits on stems immersed in phosphate solution 0.2 M K2HPO4 produced less ethylene than control fruits on stems immersed in water. Phosphate mediated inhibition of ethylene production was found to be the highest in fruits in the pink stage of maturity, which produced ethylene at the highest rate. Phosphate also inhibited ethylene production in slices prepared from maturing fruits, both apple and tomato. We suggest that phosphate is an inhibitor of ethylene biosynthesis in sufficiently mature tomato and apple fruits in which the rise of ethylene production is already very rapid. Presented at the International Symposium “Plant Growth Regulators” held on June 18–22, 1984 at Liblice, Czechoslovakia.  相似文献   

5.
A role for jasmonates in climacteric fruit ripening   总被引:12,自引:0,他引:12  
Jasmonates are a class of oxylipins that induce a wide variety of higher-plant responses. To determine if jasmonates play a role in the regulation of climacteric fruit ripening, the effects of exogenous jasmonates on ethylene biosynthesis and color, as well as the endogenous concentrations of jasmonates were determined during the onset of ripening of apple (Malus domestica Borkh. cv. Golden Delicious) and tomato (Lycopersicon esculentum Mill. cv. Cobra) fruit. Transient (12 h) treatment of pre-climacteric fruit discs with exogenous jasmonates at low concentration (1 or 10 μM) promoted ethylene biosynthesis and color change in a concentration-dependent fashion. Activities of both 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase and ACC synthase were stimulated by jasmonate treatments in this concentration range. The endogenous concentration of jasmonates increased transiently prior to the climacteric increase in ethylene biosynthesis during the onset of ripening of both apple and tomato fruit. The onset of tomato fruit ripening was also preceded by an increase in the percentage of the cis-isomer of jasmonic acid. Inhibition of ethylene action by diazocyclopentadiene negated the jasmonate-induced stimulation of ethylene biosynthesis, indicating jasmonates act at least in part via ethylene action. These results suggest jasmonates may play a role together with ethylene in regulating the early steps of climacteric fruit ripening. Received: 14 August 1997 / Accepted: 4 October 1997  相似文献   

6.
Molecular biology of fruit ripening and its manipulation with antisense genes   总被引:25,自引:0,他引:25  
Considerable progress in tomato molecular biology has been made over the past five years. At least 19 different mRNAs which increase in amount during tomato fruit ripening have been cloned and genes for enzymes involved in cell wall degradation (polygalacturonase and pectinesterase) and ethylene synthesis (ACC synthase) have been identified by conventional procedures. Transgenic plants have been used to identify regions of DNA flanking fruit-specific, ripening-related and ethylene-regulated genes and trans-acting factors which bind to these promoters have also been identified.Antisense genes expressed in transgenic plants have proved to be highly effective for inhibiting the specific expression of ripening-related genes. These experiments have changed our understanding of how softening occurs in tomato fruit. Antisense techniques have also been used to identify genes encoding enzymes for carotenoid biosynthesis (phytoene synthase) and ethylene biosynthesis (the ethylene-forming enzyme). The altered characteristics of fruit transformed with specific antisense genes, such as retarded ripening and resistance to splitting, may prove to be of value to fruit growers, processors and ultimately the consumer.  相似文献   

7.
This work investigated how calcium regulates the ethylene biosynthesis in the fruits of wild-type tomato (Lycopersicon esculentum L.) and their ethylene receptor never-ripe (Nr) mutants. In Nr tomato, the ethylene perception was blocked. When both materials were treated with calcium, the content of 1-aminocyclopropane-1-carboxylic acid (ACC)/malonyl-ACC and the activity of ACC oxidase (ACO) in tomato fruit discs increased, whereas the production of ethylene, content of malondialdehyde, and membrane permeability decreased. Calcium treatment did not affect the activity of ACC synthase, which is the first committed step in the ethylene biosynthesis pathway. The expression of LeACO1 in mature green fruit was inhibited significantly by calcium treatment in wild-type and Nr tomatoes, but the expression of LeACS2, the key ACC synthase gene in ethylene synthesis during tomato fruit maturing, was not affected. These results revealed that the effect of calcium on ethylene biosynthesis in tomato mature green fruit was independent of ethylene perception. The results also revealed that the targeting step of calcium preventing ethylene production was located at the ACC conversion to ethylene, by means of inhibiting ACC availability for ACO through enhancing cell membrane integrity and by means of preventing LeACO1 gene expression. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 1, pp. 60–67. The text was submitted by the authors in English.  相似文献   

8.
We investigated the function of the tomato (Lycopersicon esculentum) E8 gene. Previous experiments in which antisense suppression of E8 was used suggested that the E8 protein has a negative effect on ethylene evolution in fruit. E8 is expressed in flowers as well as in fruit, and its expression is high in anthers. We introduced a cauliflower mosaic virus 35S-E8 gene into tomato plants and obtained plants with overexpression of E8 and plants in which E8 expression was suppressed due to co-suppression. Overexpression of E8 in unripe fruit did not affect the level of ethylene evolution during fruit ripening; however, reduction of E8 protein by cosuppression did lead to elevated levels during ripening. Levels for ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), and ACC oxidase mRNA were increased approximately 7-fold in fruit of plants with reduced E8 protein. Levels of ACC synthase 2 mRNA were increased 2.5-fold, and ACC synthase 4 mRNA was not affected. Reduction of E8 protein in anthers did not affect the accumulation of ACC or of mRNAs encoding enzymes involved in ethylene biosynthesis. Our results suggest that the product of the E8 reaction participates in feedback regulation of ethylene biosynthesis during fruit ripening.  相似文献   

9.
The hormone ethylene regulates many aspects of plant growth and development, including fruit ripening. In transgenic tomato (Lycopersicon esculentum) plants, antisense inhibition of ethylene biosynthetic genes results in inhibited or delayed ripening. The dominant tomato mutant, Never-ripe (Nr), is insensitive to ethylene and fruit fail to ripen. The Nr phenotype results from mutation of the ethylene receptor encoded by the NR gene, such that it can no longer bind the hormone. NR has homology to the Arabidopsis ethylene receptors. Studies on ethylene perception in Arabidopsis have demonstrated that receptors operate by a "receptor inhibition" mode of action, in which they actively repress ethylene responses in the absence of the hormone, and are inactive when bound to ethylene. In ripening tomato fruit, expression of NR is highly regulated, increasing in expression at the onset of ripening, coincident with increased ethylene production. This expression suggests a requirement for the NR gene product during the ripening process, and implies that ethylene signaling via the tomato NR receptor might not operate by receptor inhibition. We used antisense inhibition to investigate the role of NR in ripening tomato fruit and determine its mode of action. We demonstrate restoration of normal ripening in Nr fruit by inhibition of the mutant Nr gene, indicating that this receptor is not required for normal ripening, and confirming receptor inhibition as the mode of action of the NR protein.  相似文献   

10.
To elucidate the role of ethylene in the production of flavor compounds by tomato fruits, wild-type tomato (Lycopersicon esculentum L., cv. Lichun) and its transgenic antisense LeACS2 line with suppressed ethylene biosynthesis were used. The metabolism of individual sugars was ethylene-independent. However, citric acid and malic acid were under ethylene regulation. The content of these acids was higher in transgenic tomato fruits and returned to normal level after transgenic fruits were treated with ethylene. Because most of amino acids, which are important precursors of volatiles, were shown to be correlated with ethylene, we surmise that amino acid-related aroma volatiles were also affected by ethylene. Headspace analysis of volatiles showed a significant accumulation of aldehydes in wild-type tomato fruits during fruit ripening and showed a dramatic decrease in most aroma volatiles in transgenic tomato fruits as compared with wild-type fruits. The production of hexanal, hexanol, trans-2-heptenal, cis-3-hexanol, and carotenoid-related volatiles, except β-damascenone and β-ionone, was inhibited by suppression of ethylene biosynthesis. No remarkable differences were observed in the concentrations of cis-3-hexenal and trans-2-hexenal between transgenic and wild-type tomato fruits, indicating these two volatiles to be independent of ethylene. Thus, there are various regulation patterns of flavor profiles in tomato fruits by ethylene. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 1, pp. 92–101. The text was submitted by the authors in English. Both authors equally contributed to this work.  相似文献   

11.
12.
13.
EIN2 (ethylene insensitive 2) is a very important component in the ethylene signal transduction pathway. Recently, the genomic DNA and full-length cDNA of LeEIN2 (tomato EIN2) have been isolated in our laboratory. To reveal the function of LeEIN2, transgenic tomato plants with reduced expression levels of LeEIN2 were produced. The fruit ripening and expressions of ripening-related genes encoding polygalacturonase and TomLoxB were inhibited in the LeEIN2-silenced transgenic plants compared to the wild-type Ailsa Craig. In the seedling ethylene response assay, the transgenic tomato plants with reduced LeEIN2 expression exhibited ethylene insensitivity. These results indicate that LeEIN2 plays a critical role in regulating tomato fruit ripening and is a positive regulator in ethylene signal transduction pathway.  相似文献   

14.
The ripening of a fleshy fruit represents the summation of an array of biochemical processes that are regulated by interactions between developmental programs and environmental inputs. Analysis of tomato (Solanum lycopersicum) mutants and inhibitor studies indicate that ethylene is necessary for full development of the ripening program of climacteric fruit such as tomato, yet ethylene alone is not sufficient. This suggests that an interaction between ethylene and nonethylene (or developmental) pathways mediates ripening. In this study, we have examined the physiological basis for ripening inhibition of the dominant Green-ripe (Gr) and Never-ripe 2 (Nr-2) mutants of tomato. Our data suggest that this inhibition is due to ethylene insensitivity in mutant fruit. Further investigation of ethylene responses in Gr and Nr-2 plants also revealed weak ethylene insensitivity during floral senescence and abscission and, during inhibition of root elongation, a phenotype associated with the triple response. However, ethylene-induced inhibition of hypocotyl elongation and petiole epinasty are normal in Gr and Nr-2, suggesting that these loci regulate a subset of ethylene responses. We have mapped both dominant mutations to a 2-cM overlapping region of the long arm of chromosome 1 of tomato, a region not previously linked to any known ethylene signaling loci. The phenotypic similarity and overlapping map location of these mutations suggest Gr and Nr-2 may be allelic and may possibly encode a novel component of the ethylene response pathway.  相似文献   

15.
16.
We have utilized a gene from bacteriophage T3 that encodes the enzyme S-adenosylmethionine hydrolase (SAMase) to generate transgenic tomato plants that produce fruit with a reduced capacity to synthesize ethylene. S-adenosylmethionine (SAM) is the metabolic precursor of 1-aminocyclopropane-1-carboxylic acid, the proximal precursor to ethylene. SAMase catalyzes the conversion of SAM to methylthioadenosine and homoserine. To restrict the presence of SAMase to ripening fruit, the promoter from the tomato E8 gene was used to regulate SAMase gene expression. Transgenic tomato plants containing the 1.1 kb E8 promoter bore fruit that expressed SAMase during the breaker and orange stage of fruit ripening and stopped expression after the fruit fully ripened. Plants containing the 2.3 kb E8 promoter expressed SAMase at higher levels during the post-breaker phases of fruit ripening and had a substantially reduced capacity to synthesize ethylene.  相似文献   

17.
18.
19.
20.
The post-translational modification of proteins enables cells to respond promptly to dynamic stimuli by controlling protein functions. In higher plants, SPINDLY (SPY) and SECRET AGENT (SEC) are two prominent O-glycosylation enzymes that have both unique and overlapping roles; however, the effects of their O-glycosylation on fruit ripening and the underlying mechanisms remain largely unknown. Here we report that SlSPY affects tomato fruit ripening. Using slspy mutants and two SlSPY-OE lines, we provide biological evidence for the positive role of SlSPY in fruit ripening. We demonstrate that SlSPY regulates fruit ripening by changing the ethylene response in tomato. To further investigate the underlying mechanism, we identify a central regulator of ethylene signalling ETHYLENE INSENSITIVE 2 (EIN2) as a SlSPY interacting protein. SlSPY promotes the stability and nuclear accumulation of SlEIN2. Mass spectrometry analysis further identified that SlEIN2 has two potential sites Ser771 and Thr821 of O-glycans modifications. Further study shows that SlEIN2 is essential for SlSPY in regulating fruit ripening in tomatoes. Collectively, our findings reveal a novel regulatory function of SlSPY in fruit and provide novel insights into the role of the SlSPY-SlEIN2 module in tomato fruit ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号