首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protoplasmic drop isolated from an internodal cell of Nitella became electrically excitable in a solution containing 0.5 mM NaCl, 0.5 mM KNO3, 1mM Ca(NO3)2 and 2mM Mg(NO3)2. A thermodynamic property of the excitable membrane was characterized in terms of tension at the surface of the protoplasmic drop. This was determined by the compression method and/or by the sessile-drop method. The surface tension of the membrane was obtained as a function of the composition of the salts in the external solution, and the time during the formative period of the excitable surface membrane. The results are summarized as follows:
1. 1. The surface of the protoplasmic drop increased with time starting from 0.003 dyne/cm and approached a steady value of about 0.1 dyne/cm within 1 h after the drop was placed in the test solution described above. The membrane became electrically excitable when the surface tension attained the steady value.
2. 2. Increase of concentration of either Na+ or K+ in the solution induced a sudden decrease of the surface tension, which followed a suppression of the excitability. The critical concentration of Na+ or K+ was about 10 mM.
3. 3. The surface tension remained constant at about 0.1 dyne/cm in a Ca2+ concentration ranging between about 0.1 and 10 mM. At this concentration the drop was excitable. Below and above this range of Ca2+ concentration, the surface tension changed sharply with concentration, and the excitability disappeared. At about 0.1 mM Ca2+ concentration a discrete variation of the surface tension was observed.
4. 4. The surface tension of the drop stayed constant at 0.1 dyne/cm in the range between 1 and 10 mM of Mg2+ concentration. Above and below this range of Mg2+ concentration, the surface tension increased sharply with the variation of Mg2+ concentration.
These results indicate that the protoplasmic drop retains its excitability in a limited range of salt composition in the external solution. This implies that the excitable membrane of the drop must be very labile in its structure against external perturbations such as electrical stimulus and/or slight variation of salt composition in the solution.  相似文献   

2.
Eggs of the sea urchins, Arbacia punctulata and Lytechinus variegatus were observed with a centrifuge microscope. The protoplasmic viscosity calculated from the displacement velocity of the nucleus in a centrifugal field is about 30 poises. The surface forces of the unfertilized egg, which were determined from the relationship between the deformations of the egg in centrifugal fields and the magnitudes of the centrifugal forces, are 0.046 dyne/cm in Arbacia and 0.087 dyne/cm in Lytechinus (mean values). Both of these values increase as the deformation of the egg increases. The cleavage plane of the first cleavage of the egg in the centrifugal field (35–140 × g) is parallel to the direction of the centrifugal force. The flattening of the fertilized egg in a constant centrifugal field changes during development, probably owing to the change in the surface force. The flattening attains a minimum shortly before the onset of cleavage and another minimum during the cleavage, corresponding to a peak of the surface before the cleavage and another peak during the cleavage.  相似文献   

3.
Protoplasts prepared from thalli ofBoergesenia forbesii were subjected to the measurement of tension at the surface by means of the suction method. The tension at the surface just after completion of spheration was 0.2–0.4 dyne/cm irrespective of the temperature. Since this value is of the same order of magnitude as those measured in other species of cells without a cell coat, it is suggested that the protoplast just after spheration is covered with the plasma membrane. The measured tension at the surface was constant and not affected by the degree of deformation of the protoplast, suggesting that the surface of the protoplast is not elastic. After some time the tension began to increase abruptly. Both the latent time elapsed prior to the increase in the tension and the rate of tension increase were strongly dependent on the temperature. As long as protoplasts were treated with cellulase, increase in the tension was completely inhibited, but it occurred soon after washing out of the cellulase. Protoplasts were stained with Calcoflour White at around the time when the tension began to increase. These results suggest that the cell wall formation begins at the time of abrupt increase in the tension at the surface.  相似文献   

4.
A study to quantify the effect of rhamnolipid biosurfactant structure on the degradation of alkanes by a variety of Pseudomonas isolates was conducted. Two dirhamnolipids were studied, a methyl ester form (dR-Me) and an acid form (dR-A). These rhamnolipids have different properties with respect to interfacial tension, solubility, and charge. For example, the interfacial tension between hexadecane and water was decreased to <0.1 dyne/cm by the dR-Me but was only decreased to 5 dyne/cm by the dR-A. Solubilization and biodegradation of two alkanes in different physical states, liquid and solid, were determined at dirhamnolipid concentrations ranging from 0.01 to 0.1 mM (7 to 70 mg/liter). The dR-Me markedly enhanced hexadecane (liquid) and octadecane (solid) degradation by seven different Pseudomonas strains. For an eighth strain tested, which exhibited extremely high cell surface hydrophobicity, hexadecane degradation was enhanced but octadecane degradation was inhibited. The dR-A also enhanced hexadecane degradation by all degraders but did so more modestly than the dR-Me. For octadecane, the dR-A only enhanced degradation by strains with low cell surface hydrophobicity.  相似文献   

5.
Thermoelasticity of red blood cell membrane.   总被引:10,自引:0,他引:10       下载免费PDF全文
The elastic properties of the human red blood cell membrane have been measured as functions of temperature. The area compressibility modulus and the elastic shear modulus, which together characterize the surface elastic behavior of the membrane, have been measured over the temperature range of 2-50 degrees C with micropipette aspiration of flaccid and osmotically swollen red cells. In addition, the fractional increase in membrane surface area from 2-50 degrees C has been measured to give a value for the thermal area expansivity. The value of the elastic shear modulus at 25 degrees C was measured to be 6.6 X 10(-3) dyne/cm. The change in the elastic shear modulus with temperature was -6 X 10(-5) dyne/cm degrees C. Fractional forces were shown to be only on the order of 10-15%. The area compressibility modulus at 25 degrees C was measured to be 450 dyne/cm. The change in the area compressibility modulus with temperature was -6 dyne/cm degrees C. The thermal area expansivity for red cell membrane was measured to be 1.2 X 10(-3)/degrees C. With this data and thermoelastic relations the heat of expansion is determined to be 110-200 ergs/cm2; the heat of extension is 2 X 10(-2) ergs/cm2 for unit extension of the red cell membrane. The heat of expansion is of the order anticipated for a lipid bilayer idealized as twice the behavior of a monolayer at an oil-water interface. The observation that the heat of extension is positive demonstrates that the entropy of the material increases with extension, and that the dominant mechanism of elastic energy storage is energetic. Assuming that the red cell membrane shear rigidity is associated with "spectrin," unit extension of the membrane increases the configurational entropy of spectrin by 500 cal/mol.  相似文献   

6.
FORCE EXERTED BY THE CLEAVAGE FURROW OF SEA URCHIN EGGS   总被引:1,自引:0,他引:1  
A drop of ferrofluid injected into the center of a dividing sea urchin egg is deformed into the shape of an hourglass when the cleavage furrow advances. The force applied to the drop is determined from the deformation of the drop and the interfacial tension between the ferrofluid and the protoplasm. The interfacial tension is determined from the deformation of a spherical drop in the protoplasm when a magnetic field is applied, and the force applied to the drop, which is estimated from the deformation by magnetic field of a similar drop in 2 per cent aqueous solution of Triton X-100 and the interfacial tension between the ferrofluid and this solution.
The force applied to the drop in the dividing egg increases during an early stage of cleavage and decreases during a later stage. The force attained a maximum of 9 × 10−3 dyne in an egg of Temnopleurus toreumaticus which pinched the drop into two when it divided. Smaller maximum forces, 3.9 × 10−3 dyne in the eggs of Temno-pleurus toreumaticus and 2.0 × 10−3 dyne in the eggs of Clypeaster japonicus (mean values), were obtained when the furrowing was arrested by the drop. The magnitude of the maximum tension developed in the contractile element located in the furrow cortex is discussed.  相似文献   

7.
Summary Cultures of 8 micro-organisms, grown in synthetic media free from surface active nutrients, were found to show a marked decrease in surface tension on prolonged incubation. The depression started after about two days cultivation and attained values ranging from 14–34 dyne/cm after 7 days. The possible origin of the substances responsible for this effect is briefly discussed.  相似文献   

8.
Serratia marcescens SS-1 and its SpnR-defective isogenic mutant, SMdeltaR, produced an extracellular surfactant able to decrease surface tension of water from 72 to 37 dyne cm(-1) (SMdeltaR strain) and to 45 dyne cm(-1) (SS-1 strain). The biosurfactant also emulsified kerosene and diesel with a maximum emulsion index of 77% (diesel and kerosene) for the SMdeltaR strain, and 72% (kerosene) and 40% (diesel) for the SS-1 strain. Deletion of spnR gene appeared to enhance biosurfactant production. Model simulations suggest that biosurfactant production by the two strains was growth-associated. The SMdeltaR strain had a yield coefficient of 22-32% g dry cell(-1), which is 32-50% higher than that of the SS-1 strain.  相似文献   

9.
Clarified cashew apple juice was evaluated as carbon source for surfactin production by Bacillus subtilis LAMI005 isolated from the tank of chlorination at the Wastewater Treatment Plant on Campus do Pici (WWTP-PICI) in the Federal University of Ceará, Brazil. The highest surfactin concentration using clarified cashew apple juice (CCAJ) supplemented with mineral medium (MM-CCAJ) was 123 mg/L, achieved after 48 h of fermentation. Almost 2-fold less than the amount produced using mineral medium supplemented with 10 g/L of glucose and 8.7 g/L of fructose (MM-GF). However, critical micelle concentration of the biosurfactants produced using MM-CCAJ was 2.5-fold lower than the one produced using MM-GF, which indicates it is a more efficient biosurfactant. Surface tension decreased from 38.50 ± 0.0 to 29.00 ± 0.0 dyne/cm when B. subtilis was grown on MM-CCAJ media (24.68% of reduction on surface tension) and remained constant up to 72 h. Emulsification index was 51.15 and 66.70% using soybean oil and kerosene, respectively. Surfactin produced in MM-CCAJ showed an emulsifying activity of, respectively, 1.75 and 2.3 U when n-hexadecane or soybean oil was tested. However, when mineral medium supplemented with 10 g/L of glucose (MM-G) was used an emulsifying activity of 2.0 and 1.75 U, with n-hexadecane and soybean oil, respectively, was obtained. These results indicate that it is feasible to produce surfactin from CCAJ, a renewable and low-cost carbon source.  相似文献   

10.
An experimental procedure and method of analysis are presented for calibration of a thin-beam force transducer. The beam transducer can be produced and calibrated with a minimum coefficient of 10 ng (10−5 dyne) force per micron (10−4 cm) deflection, i.e.,k B∼0.1 dyne/cm. Since beam deflections on the order of 0.1 μm can be detected, forces of a few nanograms can be resolved. Such forces are common in mechanical experiments on microscopic bodies, e.g., biological cells, artificial membrane capsules, droplets, etc.  相似文献   

11.
Melis P  Noorlander ML  Bos KE 《Plastic and reconstructive surgery》2001,107(5):1201-5; discussion 1206-7
In a controlled study using 15 piglets, the efficacy of skin stretching using a skin stretching device was tested by quantifying the tension decrease during skin stretching in undermined and not undermined wounds. The viability of the skin margins was examined in both situations. Thirty standardized wounds was created: around 15 wounds on one flank, the surrounding skin was undermined; whereas around the 15 wounds on the opposite flank, the surrounding skin was not undermined. The force required to close the 9 x 9 cm defect was measured at the beginning, after undermining, and after 30 minutes of skin stretching. Also examined was the wound healing after 1 day and 1 week. A tension decrease of 3.02 N (13.6 percent reduction of the total force that is required to close the wound at the beginning) was seen due to undermining the surrounding skin. Skin stretching for 30 minutes without undermining the skin showed a tension decrease of 6.10 N (26.5 percent). Therefore, the tension decrease due to skin stretching was twice as high in comparison with undermining the skin margins alone. This has been statistically proven to be significant (-d (difference) = 3.08, 95 percent confidence interval = 2.16; 4.00, p < 0.001). When the undermined skin of the wound was stretched for 30 minutes, we measured a total tension decrease of 7.60 N (34.1 percent). There was a statistically significant but small difference in total tension decrease as a result of undermining combined with skin stretching in comparison with skin stretching without undermining (-d = 1.51, 95 percent confidence interval = 0.77; 2.23, p < 0.001). Undermining the surrounding skin involved cutting musculocutaneous perforating vessels. Looking at the viability of the skin, seven wounds, all found in the undermined group, showed skin necrosis after 1 week. Excessive seroma formation was seen in all wounds around which the skin was undermined. In the not undermined wounds, there were no problems in wound healing. In conclusion, skin stretching for only 30 minutes using a skin stretching device significantly reduces wound closing tension. The additional advantage of skin stretching over that of undermining alone is clearly shown. Undermining the wound margins before skin stretching gives a small additional tension decrease but has well-known complications, such as skin-edge necrosis and seroma formation.  相似文献   

12.
Wettability of the leaf surface, surface tension of the liquid, and stomatal morphology control penetration of stomata by liquids. The critical surface tension of the lower leaf surface of Zebrina purpusii Brückn. was estimated to be 25 to 30 dyne cm−1. Liquids having a surface tension less than 30 dyne cm−1 gave zero contact angle on the leaf surface and infiltrated stomata spontaneously while liquids having a surface tension greater than 30 dyne cm−1 did not wet the leaf surface and failed to infiltrate stomata. Considering stomata as conical capillaries, we were able to show that with liquids giving a finite contact angle, infiltration depended solely on the relationship between the magnitude of the contact angle and the wall angle of the aperture. Generally, spontaneous infiltration of stomata will take place when the contact angle is smaller than the wall angle of the aperture wall. The degree of stomatal opening (4, 6, 8, or 10 μm) was of little importance. Cuticular ledges present at the entrance to the outer vestibule and between the inner vestibule and substomatal chamber resulted in very small if not zero wall angles, and thus played a major role in excluding water from the intercellular space of leaves. We show why the degree of stomatal opening cannot be assessed by observing spontaneous infiltration of stomata by organic liquids of low surface tension.  相似文献   

13.
It is well documented that physiological and morphological properties of anchored cells are influenced by fluid shear stress. Common orbital shakers provide a means of simultaneously applying shear stress to cells for tens to hundreds of cases by loading the shaker with multiple dishes. However, the complex flow in orbiting dishes is amenable to analytical solution for resolving shear created by the fluid motion only for simplified conditions. The only existing quantification of shear in this flow is an equation that estimates a constant scalar value of shear for the entire surface of the dish. In practice, wall shear stress (WSS) will be oscillatory rather than steady due to the travelling waveform and will vary across the surface of the dish at any instant in time. This article presents a computational model that provides complete spatial and temporal resolution of WSS over the bottom surface of a dish throughout the orbital cycle. The model is reasonably well validated by the analytical solution, with resultant WSS magnitudes that are within 0.99 ± 0.42 dyne/cm(2) . The model results were compared to tangential WSS magnitudes obtained using one-dimensional optical velocimetry at discreet locations on the bottom of an orbiting dish. The experimental minimum and maximum WSS at 1 mm from the center of the dish were 6 and 7 dyne/cm(2) , respectively, whereas WSS generated from the computational model ranged from 0.5 to 8.5 dyne/cm(2) . The experimental minimum and maximum WSS at 12 mm from the center of the dish were 6 and 16 dyne/cm(2) , respectively, whereas WSS generated from the computational model ranged from 0.5 to 14 dyne/cm(2) . Discrepancies between the experimental and computational data may be attributed to a sparse sampling rate for the experimental probe, a sharp gradient at the sample area which could cause the unidirectional probe to be inaccurate if its location were not precise, and too few particles to track and a scattering of the signal by the free surface when the liquid is shallow.  相似文献   

14.
King Edward and Majestic seed tubers, selected as ‘clean’ (macroscopically symptomless), moderate and severe according to the extent of black scurf, were planted in field experiments at Rothamsted between 1964 and 1968. Seed infection sometimes delayed plants emerging but did not affect final plant populations. Crops from severely diseased seed yielded, on average, 7% less than ‘clean’ tubers (King Edward 6–8% less and Majestic 0–20% less). Seed infection affected tuber size distribution; compared with ‘clean’ seed, severely infected King Edward seed yielded slightly more chats (< 1 ½ in, 3.8 cm) and 1.5 ton/acre (3.8 t/ha) less large tubers (2 ¼–3 ¼ in, 5.7–8.3 cm). The effects were similar with Majestic although differences were smaller. However, total yields from diseased stocks (unselected) seldom differed significantly from the ‘clean’ tubers selected from them. Crops from moderately and severely diseased seed had more Corticium on stems and black scurf on tubers and usually less Oospora pustulans than from ‘clean’ seed.  相似文献   

15.
One yeast strain, SY16, was selected as a potential producer of a biosurfactant, and identified as a Candida species. A biosurfactant produced from Candida sp. SY16 was purified and confirmed to be a glycolipid. This glycolipid-type biosurfactant lowered the surface tension of water to 29 dyne/cm at critical micelle concentration of 10 mg/l (1.5 × 10−5 M), and the minimum interfacial tension was 0.1 dyne/cm against kerosene. Thin-layer and high-pressure liquid chromatography studies demonstrated that the glycolipid contained mannosylerythritol as a hydrophilic moiety. The hydrophilic sugar moiety of the biosurfactant was determined to be β-d-mannopyranosyl-(1 → 4)-O-meso-erythritol by nuclear magnetic resonance (NMR) and fast atom bombardment mass–spectroscopy analyses. The hydrophobic moiety, fatty acids, of the biosurfactant was determined to be hexanoic, dodecanoic, tetradecanoic, and tetradecenoic acid by gas chromatography–mass spectroscopy. The structure of the native biosurfactant was determined to be 6-O-acetyl-2,3- di-O-alkanoyl-β-d-mannopyranosyl-(1 → 4)-O-meso-erythritol by NMR analyses. We newly determined that an acetyl group was linked to the C-6 position of the d-mannose unit in the hydrophilic sugar moiety. Received: 18 December 1999 / Received last revision: 2 June 1999 / Accepted: 4 June 1999  相似文献   

16.

Cheliceral chelal design in free-living astigmatid mites (Arthropoda: Acari) is reviewed within a mechanical model. Trophic access (body size and cheliceral reach) and food morsel handling (chelal gape and estimated static adductive crushing force) are morphologically investigated. Forty-seven commonly occurring astigmatid mite species from 20 genera (covering the Acaridae, Aeroglyphidae, Carpoglyphidae, Chortoglyphidae, Glycyphagidae, Lardoglyphidae, Pyroglyphidae, Suidasiidae, and Winterschmidtiidae) are categorised into functional groups using heuristics. Conclusions are confirmed with statistical tests and multivariate morphometrics. Despite these saprophagous acarines in general being simple ‘shrunken/swollen’ versions of each other, clear statistical correlations in the specifics of their mechanical design (cheliceral and chelal scale and general shape) with the type of habitat and food consumed (their ‘biome’) are found. Using multivariate analyses, macro- and microsaprophagous subtypes are delineated. Relative ratios of sizes on their own are not highly informative of adaptive syndromes. Sympatric resource competition is examined. Evidence for a maximum doubling of approximate body volume within nominal taxa is detected but larger mites are not more ‘generalist’ feeding types. Two contrasting types of basic ‘Bauplan’ are found differing in general scale: (i) a large, chunk-crunching, ‘demolition’-feeding omnivore design (comprising 10 macrosaprophagous astigmatid species), and (ii) a small selective picking, squashing/slicing or fragmentary/‘plankton’ feeding design (which may indicate obligate fungivory/microbivory) comprising 20 microsaprophagous acarid-shaped species. Seventeen other species appear to be specialists. Eleven of these are either: small (interstitial/burrowing) omnivores—or a derived form designed for processing large hard food morsels (debris durophagy, typified by the pyroglyphid Dermatophagoides farinae), or a specialist sub-type of particular surface gleaning/scraping fragmentary feeding. Six possible other minor specialist gleaning/scraping fragmentary feeders types each comprising one to two species are described. Details of these astigmatid trophic-processing functional groups need field validation and more corroborative comparative enzymology. Chelal velocity ratio in itself is not highly predictive of habitat but with cheliceral aspect ratio (or chelal adductive force) is indicative of life-style. Herbivores and pest species are typified by a predicted large chelal adductive force. Pest species may be ‘shredders’ derived from protein-seeking necrophages. Carpoglyphus lactis typifies a mite with tweezer-like chelae of very feeble adductive force. It is suggested that possible zoophagy (hypocarnivory) is associated with low chelal adductive force together with a small or large gape depending upon the size of the nematode being consumed. Kuzinia laevis typifies an oophagous durophage. Functional form is correlated with taxonomic position within the Astigmata—pyroglyphids and glycyphagids being distinct from acarids. A synthesis with mesostigmatid and oribatid feeding types is offered together with clarification of terminologies. The chelal lyrifissure in the daintiest chelicerae of these astigmatids is located similar to where the action of the chelal moveable digit folds the cheliceral shaft in uropodoids, suggesting mechanical similarities of function. Acarid astigmatids are trophically structured like microphytophagous/fragmentary feeding oribatids. Some larger astigmatids (Aleuroglyphus ovatus, Kuzinia laevis, Tyroborus lini) approximate, and Neosuidasia sp. matches, the design of macrophytophagous oribatids. Most astigmatid species reviewed appear to be positioned with other oribatid secondary decomposers. Only Dermatophagoides microceras might be a primary decomposer approximating a lichenivorous oribatid (Austrachipteria sp.) in trophic form. Astigmatid differences are consilient with the morphological trend from micro- to macrophytophagy in oribatids. The key competency in these actinotrichid mites is a type of ‘gnathosomisation’ through increased chelal and cheliceral height (i.e., a shape change that adjusts the chelal input effort arm and input adductive force) unrestricted by the dorsal constraint of a mesostigmatid-like gnathotectum. A predictive nomogram for ecologists to use on field samples is included. Future work is proposed in detail.

  相似文献   

17.
Correction     
We investigated the physical properties of bacterial cytoplasmic membranes by applying the method of micropipette aspiration to Escherichia coli spheroplasts. We found that the properties of spheroplast membranes are significantly different from that of laboratory-prepared lipid vesicles or that of previously investigated animal cells. The spheroplasts can adjust their internal osmolality by increasing their volumes more than three times upon osmotic downshift. Until the spheroplasts are swollen to their volume limit, their membranes are tensionless. At constant external osmolality, aspiration increases the surface area of the membrane and creates tension. What distinguishes spheroplast membranes from lipid bilayers is that the area change of a spheroplast membrane by tension is a relaxation process. No such time dependence is observed in lipid bilayers. The equilibrium tension-area relation is reversible. The apparent area stretching moduli are several times smaller than that of stretching a lipid bilayer. We conclude that spheroplasts maintain a minimum surface area without tension by a membrane reservoir that removes the excessive membranes from the minimum surface area. Volume expansion eventually exhausts the membrane reservoir; then the membrane behaves like a lipid bilayer with a comparable stretching modulus. Interestingly, the membranes cease to refold when spheroplasts lost viability, implying that the membrane reservoir is metabolically maintained.  相似文献   

18.
We investigated the physical properties of bacterial cytoplasmic membranes by applying the method of micropipette aspiration to Escherichia coli spheroplasts. We found that the properties of spheroplast membranes are significantly different from that of laboratory-prepared lipid vesicles or that of previously investigated animal cells. The spheroplasts can adjust their internal osmolality by increasing their volumes more than three times upon osmotic downshift. Until the spheroplasts are swollen to their volume limit, their membranes are tensionless. At constant external osmolality, aspiration increases the surface area of the membrane and creates tension. What distinguishes spheroplast membranes from lipid bilayers is that the area change of a spheroplast membrane by tension is a relaxation process. No such time dependence is observed in lipid bilayers. The equilibrium tension-area relation is reversible. The apparent area stretching moduli are several times smaller than that of stretching a lipid bilayer. We conclude that spheroplasts maintain a minimum surface area without tension by a membrane reservoir that removes the excessive membranes from the minimum surface area. Volume expansion eventually exhausts the membrane reservoir; then the membrane behaves like a lipid bilayer with a comparable stretching modulus. Interestingly, the membranes cease to refold when spheroplasts lost viability, implying that the membrane reservoir is metabolically maintained.  相似文献   

19.
Stomatal penetration of aqueous solutions into pear (Pyrus communis L. cv. Bartlett) leaves was induced with surfactants. The effectiveness of surfactants in promoting stomatal penetration was related to their effectiveness in decreasing surface tension. Vatsol OT (dioctyl ester of sodium sulfosuccinic acid) was most effective, X-77 (compounded product of alkyl aryl polyethoxy ethanol, free fatty acids and isopropanol) intermediate, and Tween 20 (polyoxyethylene sorbitan monolaurate) least effective. The percentage of stomata penetrated was limited, ranging from 0.5–4.5 %. There was no evidence of stomatal penetration of aqueous solutions with surface tensions of approximately 70 dyne cm−1. The importance of stomatal penetration in foliar absorption under conditions of plant culture is discussed.  相似文献   

20.
We investigated the electric organ discharge (EOD) activity of the mormyrid fish Brienomyrus niger during social encounters. The fish were contained in porous ceramic shelters and tested alone and in pairs in an experimental tank designed to restrict communication to the electrosensory modality. We moved one fish toward and away from a stationary conspecific, beginning at a distance known to be outside the range of communication (250 cm). Baseline EOD activity was recorded prior to interaction and categorized as ‘variable’, ‘regular’, and ‘scallop’. When moved closer together, the fish modulated this baseline activity in four ways: (1) At 100–130 cm apart, the stationary fish emitted a maximum of sudden EOD rate increases which defined the outer limit of its communication range. (The associated Electric Field Gradient was 1 μV/cm). (2) Long EOD cessations, which we called social silence, lasted from 5–130 s and occurred most frequently when the fish were 36 to 55 cm apart (EFG: 100 μV/cm). The duration of social silence was negatively correlated (r = ? 0.862) with the responding fish's size, and was independent of the partner's sex and size. Fish whose EOD baseline pattern was ‘scallop’ were least likely to fall electrically silent, and those that were categorized as ‘regular’ or ‘variable’ were most likely to cease discharging. (3) Within electrolocation range, fish ‘regularized’ their EOD activity while the partner was ‘silent’ (EFG: 1 mV/cm). (4) Following long EOD cessations the fish resumed discharging with characteristic EOD rebound patterns. The possible ethological significance of these findings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号