首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap junctional communication permits the direct intercellular exchange of small molecules and ions. In vertebrates, gap junctions are formed by the conjunction of two connexons, each consisting of a hexamer of connexin proteins, and are either established or degraded depending on the nature of the tissue formed. Gap junction function has been implicated in both directing developmental cell fate decisions and in tissue homeostasis/metabolite exchange. In mouse development, formation of the extra embryonal parietal endoderm from visceral endoderm is the first epithelial-mesenchyme transition to occur. This transition can be mimicked in vitro, by F9 embryonal carcinoma (EC) cells treated with retinoic acid, to form (epithelial) primitive or visceral endoderm, and then with parathyroid hormone-related peptide (PTHrP) to induce the transition to (mesenchymal) parietal endoderm. Here, we demonstrate that connexin43 mRNA and protein expression levels, protein phosphorylation and subcellular localization are dynamically regulated during F9 EC cell differentiation. Dye injection showed that this complex regulation of connexin43 is correlated with functional gap junctional communication. Similar patterns of connexin43 expression, localization and communication were found in visceral and parietal endoderm isolated ex vivo from mouse embryos at day 8.5 of gestation. However, in F9 cells this tightly regulated gap junctional communication does not appear to be required for the differentiation process as such.  相似文献   

2.
The histone compositions and average distance between nucleosomes have been determined for F9.22 and PSA1 murine embryonal carcinoma cell lines, for primary extra-embryonic endoderm derived from the in vitro differentiation of PSA1 embryonal carcinoma cells, and for two long-term extra-embryonic endodermal cell lines. A change in the relative proportions of two forms of the H1 histones (H1A and H1B) was found to correlate with the extra-embryonic endodermal differentiated phenotype. The embryonal carcinoma cells had a ratio of H1A/H1B of 1.49 or greater. In contrast, extra-embryonic endoderm from either cell lines or freshly isolated from differentiating embryonal carcinoma cell cultures had a ratio of H1A/H1B of less than 0.9. Partial peptide mapping of gel purified H1A and H1B suggest the two proteins differ in primary structure. The nucleosome repeat length of the embryonal carcinoma cell lines was 196 bp of DNA. Primary extra-embryonic endoderm was found to have a value of 205 bp, but the long-term extra-embryonic endodermal cell lines had an average nucleosome repeat length of 187 bp. Since both freshly isolated primary endoderm and the long-term endodermal cell lines express differentiated functions (basement membrane glycoproteins and plasminogen activator activity), there appears to be no simple correlation between the nucleosome repeat length and the expression of these differentiated functions.  相似文献   

3.
We have previously demonstrated that three potent iron chelators, hinokitiol, dithizone and deferoxamine, induce differentiation of F9 embryonal carcinoma cells, as do other well-known morphogens such as retinoic acid (RA) and sodium butyrate (NaB). In this study, we compared the patterns of cell proliferation, cell death and cell cycle arrest during the process of differentiation induced by these five agents. When F9 cells were cultured with the agents at their individual differentiation-inducing concentrations, cell proliferation was rapidly inhibited by treatment with the iron chelators and NaB. In contrast, RA did not influence the rate of increase of cell number at the concentration of 1 microm. The three chelators also caused a marked reduction in cell viability, and the treated cells exhibited internucleosomal DNA fragmentation, whereas cells treated with NaB showed no apoptotic characteristics. RA induced apoptosis weakly at 1 microm and strongly at higher concentrations. In addition, all the iron chelators hindered cell cycle progression, resulting in an arrest at the G1-S interface or S phase. The phenomena observed in chelator-treated cells were considerably different from those in RA- or NaB-treated cells. It is concluded that the three iron chelators cause both severe apoptotic cell death and cell cycle arrest of proliferating F9 cells via cellular iron deprivation, and that this apoptotic change may be independent of the process of differentiation.  相似文献   

4.
5.
6.
Summary Heat shock proteins (HSPs) have been recognized as molecules that maintain cellular homeostasis during changes in the environment. Here we report that HSP90 functions not only in stress responses but also in certain aspects of cellular differentiation. We found that HSP90 slowed remarkably high expression in undifferentiated human embryonal carcinoma (EC) cells, which were subsequently dramatically down-regulated during in vitro cellular differentiation, following retinoic acid (RA) treatment, at the protein level. Surprisingly, heat shock treatment also triggered the down-regulation of HSP90 within 48 h at the protein level. Furthermore, the heat treatment induced cellular differentiation into neural cells. This down-regulation of HSP90 by heat treatment was shifted to an up-regulation attern after cellular differentiation in response to RA treatment. In order to clarify the functions of HSP90 in cellular differentiation, we conducted various experiments, including overexpression of HSP90 via gene transfer. We showed that the RA-induced differentiation of EC cells into a neural cell lineage was inhibited by overexpression of the HSP90α or-β isoform via the gene transfer method. On the other hand, the overexpression of HSP90β alone impaired cellular differentiation into trophoectoderm. These results show that down-regulation of HSP90 is a physiological critical event in the differentiation of human EC cells and that specific HSP90 isoforms may be involved in differentiation into specific cell lineages.  相似文献   

7.
Immunofuorescence staining with antibodies to tubulin and vimentin and staining with phalloidin have been used to examine the effects of methylmercury on the cytoskeleton of embryonal carcinoma cells in culture. Exposure of embryonal carcinoma cells to methylmercury (0.01 to 10 m) resulted in concentration- and time-dependent disassembly of microtubules in interphase and mitotic cells. These effects were reversible when cultures were washed free of methylmercury. Spindle microtubules were more sensitive than those of interphase cells. Spindle damage resulted in an accumulation of cells in prometaphase/metaphase, which; correlated with a temporary delay in the resumption of normal proliferation rate upon removal of methylmercury. Of the interphase cytoskeletal components, microtubules were the first affected by methylmercury. Vimentin intermediate filaments appeared relatively insensitive to methylmercury, but showed a reorganization secondary to the microtubule disassembly. Actin microfilaments appeared unchanged in cells showing complete absence of microtubules. Our results 1) support previous reports suggesting that microtubules are a primary target of methylmercury, 2) document a differential sensitivity of mitotic and interphase microtubule systems and 3) demonstrate the relative insensitivities of other cytoskeletal components.Abbreviations -MEM alpha minimal essential medium - EC embryonal carcinoma cells - McHg methylmercury - PBS phosphate buffered saline - SB microtubule stabilizing buffer  相似文献   

8.
9.
Summary Stem cells of the embryonal carcinoma cell line called H6 can be induced to differnetiate to endoderm-like cells by retinoic acid (3×10−6 M). We have detected a diffusible and stable factor which is secreted by H6 endoderm-like cells and stimulates the growth of H6 stem cells. The stimulation by the endoderm-like cells is considereably greater than that by mouse fibroblasts or H6 stem cells themselves. No reciprocal stimulation of endoderm-like cells by stem cells occurs. Part but not all of the stimulation might be due to extracellular matrix proteins or to insulin-like growth factor type 2, each of which also stimulates the growth of H6 stem cells. Insulin causes no such stimulation. This work was supported by research rant no. CA-16754 from the National Cancer Institute to J. W. L. E. L. G. was supported by an American Heart Association Medical Student Research Award. Editor's Statement This paper presents a good example of cooperativity between undifferentiated teratoma stem cells and differentiated parietal endoderm-derived countrparts in terms of growth support. It raises the interesting question of the relationship between factors produced by paprietal and visceral endoderm cells. Gordon H. Sato  相似文献   

10.
We have used the P19 embryonal carcinoma (EC) aggregation system as a model for early mouse development to study induction and modulation of mesodermal and neuronal differentiation. By studying the expression of marker genes for differentiated cells in this model we have shown that there is a good correlation between the differentiation direction induced in P19 EC aggregates and the expression of these genes. Expression of the neuronal gene midkine is exclusively upregulated when P19 EC cells are induced to form neurons while expression of early mesodermal genes such as Brachyury T, evx-1 , goosecoid and nodal is elevated after induction to the mesodermal pathway. In the present study we have further shown that activin A blocks the different directions of differentiation of P19 EC cells induced by retinoic acid (RA) in a dose-dependent way. To understand the mechanism behind this inhibitory action of activin A the expression of several RA-responsive genes, including the three RA receptor genes (RARα, RARβ and RARγ) was determined. Since activin has no clear effect on the expression and activity of the RAR it is very likely that this factor acts downstream of these receptors. In addition to activin, fibroblast growth factors (FGF) were shown to modulate P19 EC cell differentiation. However, in contrast to activin, FGF exclusively blocks the mesodermal differentiation of P19 EC cells by either 10−9mol/L RA or a factor produced by visceral endoderm-like cells (END-2 factor). The FGF effect is dose-independent. These results suggest an important function for RA and the END-2 factor in the induction and for activin and FGF in the modulation of specific differentiation processes in murine development.  相似文献   

11.
12.
The P19 embryonal carcinoma cell line represents a pluripotential stem cell that can differentiate along the neural or muscle cell lineage when exposed to different environments. Exposure to retinoic acid induces P19 cells to differentiate into neurons and astrocytes that express similar developmental markers as their embryonic counterparts. We examined the expression of gap junction genes during differentiation of these stem cells into neurons and astrocytes. Untreated P19 cells express at least two gap junction proteins, connexins 26 and 43. Connexin32 could not be detected in these cells. Treatment for 96 hr with 0.3 mM retinoic acid induced the P19 cells to differentiate first into neurons followed by astrocytes. Retinoic acid produced a decrease in connexin43 mRNA, protein, and functional gap junctions. Connexin26 message was not affected by retinoic acid treatment. The neurons that developed consisted of small round cell bodies extending two to three neurites and expressed MAP2. Connexin26 was detected at sites of cell–cell and cell–neurite contact within 3 days following differentiation with retinoic acid. The astrocytes were examined for production of their intermediate filament marker, glial fibrillary acidic protein (GFAP). GFAP was first detected at 8 days by Western blotting. In culture, astrocytes co-expressed GFAP and connexin43 similar to primary cultures of mouse brain astrocytes. These results suggest that differentiation of neurons and glial cells involves specific connexin expression in each cell type. The P19 cell line will provide a valuable model with which to examine the role gap junctions play during differentiation events of developing neurons and astrocytes. Dev. Genet. 21:187–200, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The very lysine-rich replacement histone variant H10 is found to be present in different murine (C1003, PC13, P19) and human (Tera-2) embryonal carcinoma cell lines. The proportion of H10 increases upon induction of differentiation of the different cell lines by various treatments. In undifferentiated PC13 EC cells H10 mRNA is present at a low level. During retinoic acid induced differentiation of mitotically synchronized PC13 EC cells, accumulation of H10 mRNA starts in the first cell cycle. The H10 protein level starts to increase in the second synchronous cycle preceding changes in the cycle parameters that become apparent in the third cycle. The results provide further support for an important role of H10 in the control of cellular differentiation in early mammalian development.Abbreviations EC embryonal carcinoma - RA retinoic acid - DAPT 4-6-diamino-2-phenylindole - SDS sodium dodecylsulphate - DMSO dimethyl sulfoxide - TCA trichloro acetic acid  相似文献   

14.
Embryonal carcinoma (EC) cells, stem cells of teratocarcinoma, represent an excellent model to study the developmental mechanisms that, inappropriately reactivated, can drive tumorigenesis. EC cells are very aggressive, and grow rapidly when injected into adult syngeneic mice. However, when injected into blastocysts, they revert to normality, giving rise to chimeric animals. In order to study the ability of postimplantation embryonic environment to "normalize" tumorigenic cells, and to study their homing, we transplanted F9, Nulli-SCC1, and P19 EC cells into 8 to 15-day allogenic CD1 mouse embryos, into allogenic CD1 newborns, and into syngeneic adult mice, and evaluated tumor formation, spreading, and homing. We found that, although at all embryonic stages successful transplantation occurred, the chances of developing tumors after birth increased with the time of injection of EC cells into the embryo. In addition, using enhanced green fluorescent protein-expressing F9 cells, we demonstrated that the cells not giving rise to tumors remained latent and could be tracked down in tissues during adulthood. Our data indicate that the embryonic environment retains a certain ability to "normalize" tumor cells also during post-implantation development. This could occur through yet unknown epigenetic signals triggering EC cells' differentiation.  相似文献   

15.
16.
Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca2+]i) via calcium influx through nAChR channels whereas intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of Galphaq/11-coupled M1, M3 and M5 receptors and intracellular calcium stores, whereas Galphai/o-protein coupled M2 receptor activity mediated neuronal differentiation.  相似文献   

17.
Fibroblast growth factors (FGFs) have been implicated in a number of proliferative lesions, including malignant tumor growth and vascularization. As a result, cytotoxic agents that target cell surface FGF receptors are currently under investigation. Previous reports have shown that conjugation of basic FGF with the ribosome inactivator, saporin, results in a potent cytotoxin specific for cells bearing high-affinity FGF receptors. In this report, we have used this FGF receptor-dependent cytotoxin to study receptor interactions at the surface of embryonal carcinoma cells, which express low numbers of high-affinity FGF receptors. The growth of three embryonal carcinoma cell lines and one embryonic stem cell line was shown to be inhibited by bFGF-saporin, suggesting that these cells are able to bind and internalize FGF through high-affinity FGF receptors. In addition, we determined that the responses of these cells to bFGF-saporin are qualitatively different than the responses of CHO-KI cells, which also exhibit low numbers of high-affinity FGF receptors. Specifically, pretreatment with bFGF-saporin reduces the cloning efficiency of CHO-KI cells 8- to 10-fold, whereas bFGF-saporin has little or no effect on the cloning efficiency of embryonal carcinoma cells. This finding suggests that bFGF-saporin is cytotoxic for CHO-KI cells, but not for embryonal carcinoma cells. Thus, our findings argue strongly that other factors, in addition to high-affinity FGF receptor number, are important in determining sensitivity of cells of bFGF-saporin.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号