首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation and migration of the sperm aster, and the migration of male and female pronuclei during fertilization were investigated in the eggs of the sand dollar, Clypeaster japonicus using the Colcemid-UV method. When an egg in Colcemid sea water was irradiated locally with UV light (about 365 nm wavelength) at a limited region containing sperm head, a sperm aster formed in this region, and migrated to the center of the UV-irradiated region during its formation. When the UV-irradiated region was displaced or its shape was changed after the formation of the sperm aster, the aster migrated to the center of the new UV-irradiated region. The direction of the migration of the sperm aster coincided with the direction of the longest astral rays. Direct contact between astral rays and the egg surface was not essential for sperm aster migration. When a region containing both the sperm centrosome and the female pronucleus was irradiated with UV light, the female pronucleus migrated toward the center of the sperm aster after they were connected by astral rays. The migration was suppressed when UV light was shaded over the region between the aster and the female pronucleus. These results suggest that the female pronucleus migrates to the sperm aster by attractive force between them.  相似文献   

2.
The movements during fertilization have been investigated with differential interference optics and recorded by time-lapse video microscopy of the clear egg of the sea urchin Lytechinus variegatus. Sperm-egg binding occurs rapidly, and following a time when the sperm gyrates on the egg surface, gamete fusion occurs. A rapid cortical contraction radiates from the fusion site and is succeeded by the elevation of the fertilization coat. Sperm incorporation occurs in two stages: the fertilization cone enlarges around and above the erect and immotile sperm and then the sperm head, midpiece, and tail are displaced along the subsurface region of the egg at an average rate of 3.5 μm/min. The formation of the sperm aster moves the male pronucleus from the subsurface region of the egg toward the egg center at a rate of 4.9 μm/min. When the rays of the radial sperm aster appear to contact the female pronucleus, the female pronucleus migrates at a rate of 14.6 μm/min to the center of the sperm aster. The now adjacent pronuclei are moved to the egg center by the continuing enlargement of the sperm aster at a rate of 2.6 μm/min. Syngamy is usually preceded by the disassembly of the sperm aster. The centripetal migration of the pronuclei appears involved in the establishment of the first embryonic axis; cleavage occurs within 8° of the direction of this centering motion.  相似文献   

3.
Anti-tubulin immunofluorescence microscopy is used here to demonstrate the configurations of the microtubule-containing structures which participate in the pronuclear movements of sea urchin fertilization. This technique shows that the egg is devoid of microtubules until after the fertilizing sperm is fully incorporated. All the microtubules which appear during the course of fertilization are organized around the base of the sperm head and the sperm aster thus formed behaves in a way that could account for the characteristic motions of the male and female pronuclei as documented by time-lapse video microscopy. Extension of astral microtubules appears to be responsible for the slow (ca. 2.5 μm min?1) movement of the sperm aster into the cytoplasm of the egg; the rapid (ca. 15 μm min?1) migration of the female pronucleus to the sperm aster seems to depend on connection of the female pronucleus to microtubules of the sperm aster. Continued extension of astral microtubules after the pronuclei are brought into conjunction can account for the centripetal motion of the paired (or fused) pronuclei and for the positioning of the zygote nucleus in the center of the egg. The behavior of astral microtubules during these motions suggests that they are capable of transmitting both pushing and pulling forces. All the pronuclear movements, and the assembly of detectable microtubules, are sensitive to the microtubule inhibitors griseofulvin and colchicine. Because of this sensitivity, and since all the observable microtubules within the egg during fertilization arise at the sperm aster, it is concluded that the pronuclear movements of fertilization result from the actions of the sperm aster. The pronuclear movements of sea urchin fertilization represent a simple but striking example of microtubule-mediated motility.  相似文献   

4.
Microtubule and centrosome distribution during sheep fertilization   总被引:3,自引:0,他引:3  
The distribution of microtubules and centrosomes was studied during sheep fertilization by electron and immunofluorescence microscopy. Tubulin and centrosomal material was identified with monoclonal anti-alpha-tubulin and MPM-2 antibodies, respectively. In ovulated eggs, microtubules were exclusively found in the meiotic spindle and centrosomal material at each of its poles. At fertilization, sperm centrosomes were incorporated into the egg and organized the sperm astral microtubules. During pronuclear development and migration, the sperm aster increased in size; microtubules of the sperm aster extended from the male pronucleus to the egg center and towards the female pronucleus. The position of the sperm aster during pronuclear migration suggests that it plays a role in this process. When the pronuclei were in apposition in the egg center, a dense array of microtubules and the centrosomal material were present between the two pronuclei. The proximal centriole of the sperm was identified by electron microscopy, between the apposed pronuclei. The centrosomal material extending around the centriole and the sperm neck and proximal mid-piece, apparently contained several foci from which microtubules radiated. These data suggest that in sheep unlike in mice, centrosomal material originating from the sperm is involved in the fertilization events.  相似文献   

5.
Two microtubule-containing structures are implicated in dorsoventral polarization of the frog egg, and we examined the relationship between them. The sperm aster provides a directional cue for a cortical rotation specifying polarity, and a vegetal cortical array of parallel microtubules is likely part of the rotational machinery. The growing aster has an accumulation of microtubules marking the path of the sperm pronucleus, and its microtubules extend into the egg cortex as well as the cytoplasm. To test whether the vegetal parallel array was an extension of astral cortical growth, fertilized or activated eggs were bisected into animal and vegetal fragments. The vegetal fragments formed parallel arrays, even when isolated within a few minutes of egg activation. Neither the sperm centrosome nor another microtubule organizing center in the animal half of the egg is required for formation of the parallel array, but some animal half activity is involved in its disappearance. Correspondence to: R.P. Elinson  相似文献   

6.
In order to understand when the orientation of the first cleavage plane is fixed along the animal-vegetal axis in starfish eggs, the behavior of the sperm aster was examined by indirect immunofluorescence staining. After duplication, the sperm aster organizes the mitotic apparatus for first cleavage perpendicular to the cleavage plane. The sperm aster located in the egg periphery just after fertilization and moved to the site close to the animal pole rather than the egg center by meiosis II. At early metaphase II, duplication of the sperm aster was detected but the axis of the resultant sperm diaster randomly pointed. Subsequently, its axis had already turned perpendicular to the animal-vegetal axis before pronucleus fusion. These results indicate that the orientation processes of the sperm diaster consist of positioning before its duplication and successive determining its azimuth. Furthermore, the azimuth and position of the mitotic apparatus for first cleavage did not change by shifting or eliminating the meiotic division-related structures such as the germinal vesicle, meiotic spindle, and female pronucleus by micromanipulation. These results show that none of them determines the first cleavage plane. Therefore, we discuss the pointing mechanism of the first cleavage plane without the influence of these meiotic division-related structures.  相似文献   

7.
Microtubules in ascidian eggs during meiosis, fertilization, and mitosis   总被引:14,自引:0,他引:14  
The sequential changes in the distribution of microtubules during germinal vesicle breakdown (GVBD), fertilization, and mitosis were investigated with antitubulin indirect immunofluorescence microscopy in several species of ascidian eggs (Molgula occidentalis, Ciona savignyi, and Halocynthia roretzi). These alterations in microtubule patterns were also correlated with observed cytoplasmic movements. A cytoplasmic latticework of microtubules was observed throughout meiosis. The unfertilized egg of M. occidentalis had a small meiotic spindle with wide poles; the poles became focused after egg activation. The other two species had more typical meiotic spindles before fertilization. At fertilization, a sperm aster first appeared near the cortex close to the vegetal pole. It enlarged into an unusual asymmetric aster associated with the egg cortex. The sperm aster rapidly grew after the formation of the second polar body, and it was displaced as far as the equatorial region, corresponding to the site of the myoplasmic crescent, the posterior half of the egg. The female pronucleus migrated to the male pronucleus at the center of the sperm aster. The microtubule latticework and the sperm aster disappeared towards the end of first interphase with only a small bipolar structure remaining until first mitosis. At mitosis the asters enlarged tremendously, while the mitotic spindle remained remarkably small. The two daughter nuclei remained near the site of cleavage even after division was complete. These results document the changes in microtubule patterns during maturation in Ascidian oocytes, demonstrate that the sperm contributes the active centrosome at fertilization, and reveal the presence of a mitotic apparatus at first division which has an unusually small spindle and huge asters.  相似文献   

8.
Insemination of sea urchin (Arbacia) ova with mussel (Mytilus) sperm has been accomplished by treating eggs with trypsin and suspending the gametes in seawater made alkaline with NaOH. Not all inseminated eggs undergo a cortical granule reaction. Some eggs either elevate what remains of their vitelline layer or demonstrate no cortical modification whatsoever. After its incorporation into the egg, the nucleus of Mytilus sperm undergoes changes which eventually give rise to the formation of a male pronucleus. Concomitant with these transformations, a sperm aster may develop in association with the centrioles brought into the egg with the spermatozoon. Both the male pronucleus and the sperm aster may then migrate centrad to the female pronucleus. Evidence is presented which suggests that fusion of the male pronuclei from Mytilus sperm with female pronuclei from Arbacia eggs may occur, although this was not directly observed. These results demonstrate that Mytilus sperm nuclei are able to react to conditions within Arbacia eggs and differentiate into male pronuclei.  相似文献   

9.
Microtubule organization and chromatin configurations in rabbit eggs after in vivo rabbit fertilization and after intracytoplasmic injection with human sperm were characterized. In unfertilized eggs, an anastral barrel-shaped meiotic spindle, oriented radially to the cortex, was observed. After rabbit sperm incorporation, microtubules were organized into a radial aster from the sperm head, and cytoplasmic microtubules were organized around the male and female pronuclei. The microtubules extending from the decondensed sperm head participated in pronuclear migration, and organization around the female pronucleus may also be important for pronuclear centration. Support for these observations was found in parthenogenetically activated eggs, in which microtubule arrays were organized around the single female pronucleus that formed after artificial activation. These observations support a biparental centrosomal contribution during rabbit fertilization as opposed to a strictly paternal inheritance pattern suggested from previous studies. In rabbit eggs that received injected human donor sperm, an astral array of microtubules radiated from the sperm neck and enlarged as the sperm head underwent pronuclear decondensation. gamma-Tubulin was observed in the center of the sperm aster. We conclude that the rabbit egg exhibits a blended centrosomal contribution necessary for completion of fertilization and that the rabbit egg may be a novel animal model for assessing centrosomal function in human sperm and spermatogenic cells following intracytoplasmic injection.  相似文献   

10.
The distribution of microtubules was studied during fertilization of the rabbit oocyte by immunofluorescence microscopy after staining with an anti-alpha-tubulin antibody. In ovulated oocytes, microtubules were found exclusively in the meiotic spindle. At fertilization, the paternal centrosome generated sperm astral microtubules. During pronuclear development, the sperm aster increased in size, and microtubules extended from the male pronucleus to the egg center and towards the female pronucleus. These observations indicate that microtubules emanating from the sperm centrosome were involved in the movements leading to the union of the male and female pronuclei. At late pronuclear stage, microtubules surrounded the adjacent pronuclei. The mitotic spindle that emerged from the perinuclear microtubules contained broad anastral poles.  相似文献   

11.
In human fertilization, the sperm introduces the centrosome; the microtubule-organizing center and microtubules are organized within the inseminated egg from the sperm centrosome. These microtubules form a radial array, called the sperm aster, the functioning of which is essential to pronuclear movement for union of male and female genome. The sperm centrosomal function is considered to be necessary for the normal human fertilization process. Therefore, the dysfunction of sperm centrosome is a possible cause of human fertilization failure. However, little information is available regarding human sperm centrosomal function during fertilization in clinically assisted reproductive technology. To assess the human sperm centrosomal function, we examined sperm aster formation and pronuclear decondensation following intracytoplasmic sperm injection (ICSI) with human sperm into the bovine egg using a Piezo-driven pipette and ethanol activation of eggs. After human sperm incorporation into bovine egg, we observed that the sperm aster was organized from sperm centrosome, and that the sperm aster was enlarged as the sperm nuclei underwent pronuclear formation. The sperm aster formation rate at 6 h post-ICSI and the male pronuclear formation rate at 8-12 h post-ICSI were 60.0% and 83.3%, respectively. No difference of the sperm aster formation rate and the male pronuclear formation rate was observed between eggs activated with ethanol and eggs without artificial activation. We concluded that this heterologous Piezo-ICSI system into bovine egg can be a novel assay for human sperm centrosomal function, and it is possible to explicate a course of fertilization failure that was unknown until now.  相似文献   

12.
The present study examined the role of the cytoskeleton in sperm entry and migration through the egg cytoplasm during fertilization in the zebra mussel, Dreissena polymorpha (Bivalvia: Veneroida: Dreissenidae). Fertilization in this freshwater bivalve occurs outside the mantle cavity, permitting detailed observations of fertilization. After its initial binding to the egg surface, the sperm is incorporated in two stages: (1) a gradual incorporation of the sperm nucleus into the egg cortex, followed by (2) a more rapid incorporation of the sperm axoneme, and translocation of the sperm head through the egg cytoplasm. Initial incorporation into the egg cortex was shown to be microfilament dependent. Microfilaments were found in the sperm's preformed acrosomal filament, the microvilli on the egg surface, and in an actin-filled insemination cone surrounding the incorporating sperm. Treatment of eggs with cytochalasin B inhibited sperm entry in a dose- and time-dependent manner. Microtubule polymerization was not necessary for initial sperm entry. Following incorporation of the sperm head, the flagellar axoneme entered the egg cytoplasm and remained active for several minutes. Associated with the incorporated axoneme was a flow of cytoplasmic particles originating near the proximal end of the flagella. Inhibition of microtubule polymerization prevented entry of the sperm axoneme, and the subsequent cytoplasmic current was not observed. After sperm incorporation into the egg cortex, no appreciable microfilaments were associated with the sperm nucleus. A diminutive sperm aster was associated with the sperm nucleus during its decondensation, but no obvious extension toward the female pronucleus was observed. The sperm aster was significantly smaller than the spindle associated with the female pronucleus, suggesting a reduced role for the sperm aster in amphimixis.  相似文献   

13.
Mitosis of egg and sperm pronuclei of Fucus distichus subsp. evanescens (C. Agardh)Powell was examined by fluorescence and electron microscopy when migration of the sperm pronucleus and, as a result, karyogamy were blocked by colchicine treatment after plasmogamy. Chromosome condensation was obsewed in both pronuclei Microspectrophotometric studies after staining the nuclei with mithramycin A clearly showed that DNA synthesis ocurred in the egg pronucleus but not in the sperm pronucleus. This means that chromosomes condensed prematurely in the sperm pronucleus (premature chromosome condensation). In some cases, the egg chromosomes became arranged on a metaphase plate, whereas the sperm chromosomes lay scattered near the egg pronucleus. Immuno fluorescence microscopy using anti-β-tubulin antibody confirmed that a normal spindle was formed at the egg pronucleus. A pair of centrioles existed at the two poles of this spindle. The sperm nuclear membrane disappeared, and microtubules radiated to the sperm chromosomes from one pole of the egg spindle.  相似文献   

14.
Centrioles are lost during oogenesis and inherited from the sperm at fertilization. In the zygote, the centrioles recruit pericentriolar proteins from the egg to form a mature centrosome that nucleates a sperm aster. The sperm aster then captures the female pronucleus to join the maternal and paternal genomes. Because fertilization occurs before completion of female meiosis, some mechanism must prevent capture of the meiotic spindle by the sperm aster. Here we show that in wild-type Caenorhabditis elegans zygotes, maternal pericentriolar proteins are not recruited to the sperm centrioles until after completion of meiosis. Depletion of kinesin-1 heavy chain or its binding partner resulted in premature centrosome maturation during meiosis and growth of a sperm aster that could capture the oocyte meiotic spindle. Kinesin prevents recruitment of pericentriolar proteins by coating the sperm DNA and centrioles and thus prevents triploidy by a nonmotor mechanism.  相似文献   

15.
Summary The cortical contraction begins 4 min after insemination and one minute after prick activation. During the next 4 min, the pigment margin moves 15 degrees toward the animal pole. The cortex then relaxes to the prefertilization level over the next 10 min. Contrary to earlier estimations, the cortical contraction occurs during the same time span as the wave of cortical granule exocytosis. We suggest that the two events may result from a common stimulus. The sperm trail (ST) forms during the relaxation of the cortex. The ST first appears as a conically-shaped trail of pigment in the cytoplasm; it then elongates into a funnel-shaped trail as the male pronucleus migrates into the egg. The base of the cytoplasmic ST can be seen on the surface of the egg as a circular condensation of pigment. The male and female pronuclei migrate at a constant rate of 12 m per minute. The male pronucleus migrates by the enlargement of its aster, whereas, it appears that the female pronucleus is dependent on the male aster for its motion.  相似文献   

16.
Terada Y 《Human cell》2004,17(4):181-186
In human fertilization, the sperm introduces the centrosome-the microtubule organizing center-and microtubules are organized within the inseminated egg from the sperm centrosome. These microtubules form a radial array, the sperm aster, the functioning of which is essential for pronuclear movement for the union of the male and female genomes. We established functional assay for human sperm centrosomal function, by using heterologus ICSI system with bovine and rabbit eggs. After human sperm incorporation into mammalian egg, we observed that the sperm aster was organized from sperm centrosome, and the sperm aster enlarged as the sperm nuclei underwent pronuclear formation. The normal human sperm aster formation rate at 6 h post-ICSI were 60.0% in bovine egg and 36.1% in rabbit egg, respectively. However, sperm aster formation rate following heterologus ICSI into bovine eggs with teratozoospermia (globozoospermia, dysplasia of fibrous sheath) were low. These data indicate that human sperm centrosomal function is low in abnormal shaped sperm. Wherus, elucidation of human sperm centrosomal function can lead us to find a new type of failure in "post ICSI events in fertilization".  相似文献   

17.
Microinjected Polystyrene Beads Move Along Astral Rays in Sand Dollar Eggs   总被引:2,自引:2,他引:0  
Movements of polystyrene beads along astral rays of the sperm aster and the mitotic aster were investigated in eggs of the sand dollars, Clypeaster japonicus and Scaphechinus mirabilis . Polystyrene beads injected into the unfertilized egg were at a standstill in the protoplasm. After fertilization, these beads exhibited movements toward the center of the sperm aster along the rays, and finally gathered around the astral center. They were distributed in blastomeres together with the mitotic centers during successive cleavages. When injected into eggs during mitosis, beads moved to the centers of the mitotic asters along astral rays. The injected beads did not move when the aster was disorganized by treatment with Colcemid, and moved when it formed after UV-irradiation. These results indicate that microtubules of astral rays are essential to the movement of polystyrene beads. The movement of small polystyrene beads (0.2–0.3 μm in diameter) resembled the saltatory movement of endogenous cytoplasmic granules, and the movement of large beads (ca. 1 μm in diameter) resembled the female pronuclear migration. All of these movements observed in fertilized eggs were demonstrated to be microtubule-dependent, perhaps sharing the same basic mechanisms.  相似文献   

18.
To complete meiosis II in animal cells, the male DNA material needs to meet the female DNA material contained in the female pronucleus at the egg center, but it is not known how the male pronucleus, deposited by the sperm at the periphery of the cell, finds the cell center in large eggs. Pronucleus centering is an active process that appears to involve microtubules and molecular motors. For small and medium-sized cells, the force required to move the centrosome can arise from either microtubule pushing on the cortex, or cortically-attached dynein pulling on microtubules. However, in large cells, such as the fertilized Xenopus laevis embryo, where microtubules are too long to support pushing forces or they do not reach all boundaries before centrosome centering begins, a different force generating mechanism must exist. Here, we present a centrosome positioning model in which the cytosolic drag experienced by cargoes hauled by cytoplasmic dynein on the sperm aster microtubules can move the centrosome towards the cell’s center. We find that small, fast cargoes (diameter ∼100 nm, cargo velocity ∼2 µm/s) are sufficient to move the centrosome in the geometry of the Xenopus laevis embryo within the experimentally observed length and time scales.  相似文献   

19.
大熊猫与金黄地鼠体外异种受精的研究   总被引:4,自引:4,他引:0  
陈大元  何光昕 《动物学报》1989,35(4):376-380
在大熊猫精子与地鼠卵的体外异种受精中,发现大熊猫精子穿入地鼠卵后可以激活受精卵产生极区,释放第二极体,受精卵内雌性原核形成。与此同时,地鼠卵的胞质也能促使大熊猫精子头发育成雄性原核,异种精卵间的相互作用与同种受精的相似。 细胞松弛素B能阻抑大熊猫雄性原核从地鼠卵皮层迁移到卵的中央,实验表明大熊猫雄性原核的迁移也受异种卵的微丝的控制。  相似文献   

20.
Following fertilization, the Xenopus egg cortex rotates relative to the cytoplasm by 30 degrees about a horizontal axis. The direction of rotation, and as a result the orientation of the embryonic body axes, is normally specified by the position of sperm entry. The mechanism of rotation appears to involve an array of aligned microtubules in the vegetal cortex (Elinson and Rowning, 1988, Devl Biol. 128, 185-197). We performed anti-tubulin immunofluorescence on sections to follow the formation of this array. Microtubules disappear rapidly from the egg following fertilization, and reappear first in the sperm aster. Surprisingly, astral microtubules then extend radially through both the animal and vegetal cytoplasm. The cortical array arises as they reach the vegetal cell surface. The eccentric position of the sperm aster gives asymmetry to the formation of the array and may explain its alignment since microtubules reaching the cortex tend to bend away from the sperm entry side. The radial polymerization of cytoplasmic microtubules is not dependent on the sperm aster or on the female pronucleus: similar but more symmetric patterns arise in artificially activated and enucleate eggs, slightly later than in fertilized eggs. These observations suggest that the cortical microtubule array forms as a result of asymmetric microtubule growth outward from cytoplasm to cortex and, since cortical and cytoplasmic microtubules remain connected throughout the period of the rotation, that the microtubules of the array rotate with the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号