首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
封淑颖  邹竹荣 《生命科学》2006,18(5):497-501
当前,越来越多的研究聚焦于由脂肪组织分泌产生的血浆蛋白,即脂肪细胞因子对血管的直接作用,其中最引人注目的是脂联素表现出显著的抗炎症和抗动脉粥样硬化的功效。本综述主要总结了脂联素对血管功能影响的研究进展,并从几方面,诸如对血管结构、内皮细胞炎症反应、一氧化氮(NO)产生及血管生成的影响进行详细阐述。  相似文献   

2.
平滑肌细胞(vascular smooth muscle cell,VSMC)的迁移对血管发育、动脉粥样硬化和术后再狭窄等起到关键性的作用。主要从激发VSMC迁移的关键炎性细胞因子、细胞间相互作用的核心成员、microRNA、细胞骨架和上述各因素的迁移信号通路这几方面来综述VSMC的迁移。  相似文献   

3.
4.
Endothelial cells (ECs) not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid, macromolecules and cells, but also play a critical role in regulation of vascular homeostasis and adaptation under mechanical stimulus via intrinsic mechanotransduction. Recently, with the dissection of microdomains responsible for cellular responsiveness to mechanical stimulus, a lot of mechanosensing molecules (mechanosensors) and pathways have been identified in ECs. In addition, there is growing evidence that endothelial mechanosensors not only serve as key vascular gatekeepers, but also contribute to the pathogenesis of various vascular disorders. This review focuses on recent findings in endothelial mechanosensors in subcellular microdomains and their roles in regulation of physiological and pathological functions under mechanical stress.  相似文献   

5.
Adipose tissue-derived stromal cells (ADSC) have previously been shown to possess stem cell properties such as transdifferentiation and self-renewal. Because future clinical applications are likely to use these adult stem cells in an autologous fashion, we wished to establish and characterize rat ADSC for pre-clinical tests. In the present study, we showed that rat ADSC expressed stem cell markers CD34 and STRO-1 at passage 1 but only STRO-1 at passage 3. These cells could also be induced to differentiate into adipocytes, smooth muscle cells, and neuron-like cells, the latter of which expressed neuronal markers S100, nestin, and NF70. Isobutylmethylxanthine (IBMX), indomethacin (INDO), and insulin were the active ingredients in a previously established neural induction medium (NIM); however, here we showed that IBMX alone was as effective as NIM in the induction of morphological changes as well as neuronal marker expression. Finally, we showed that vascular smooth muscle cells could also be induced by either NIM or IBMX to differentiate into neuron-like cells that expressed NF70.  相似文献   

6.
In the body, vascular cells continuously interact with tissues that possess nanostructured surface features due to the presence of proteins (such as collagen and elastin) embedded in the vascular wall. Despite this fact, vascular stents intended to restore blood flow do not have nanoscale surface features but rather are smooth at the nanoscale. As the first step towards creating the next generation of vascular stent materials, the objective of this in vitro study was to investigate vascular cell (specifically, endothelial, and vascular smooth muscle cell) adhesion on nanostructured compared with conventional commercially pure (cp) Ti and CoCrMo. Nanostructured cp Ti and CoCrMo compacts were created by separately utilizing either constituent cp Ti or CoCrMo nanoparticles as opposed to conventional micron-sized particles. Results of this study showed for the first time increased endothelial and vascular smooth muscle cell adhesion on nanostructured compared with conventional cp Ti and CoCrMo after 4 hours' adhesion. Moreover, compared with their respective conventional counterparts, the ratio of endothelial to vascular smooth muscle cells increased on nanostructured cp Ti and CoCrMo. In addition, endothelial and vascular smooth muscle cells had a better spread morphology on the nanostructured metals compared with conventional metals. Overall, vascular cell adhesion was better on CoCrMo than on cp Ti. Results of surface characterization studies demonstrated similar chemistry but significantly greater root-mean-square (rms) surface roughness as measured by atomic force microscopy (AFM) for nanostructured compared with respective conventional metals. For these reasons, results from the present in vitro study provided evidence that vascular stents composed of nanometer compared with micron-sized metal particles (specifically, either cp Ti or CoCrMo) may invoke cellular responses promising for improved vascular stent applications.  相似文献   

7.
Vascular smooth muscle cells (VSMCs) proliferation is involved in vascular atherosclerosis and restenosis. Recent studies have demonstrated that lipopolysaccharide (LPS) promotes VSMCs proliferation, but the signalling pathways which are involved are not completely understood. The purpose of this review was to summarize the existing knowledge of the role and molecular mechanisms involved in controlling VSMCs proliferation stimulated by LPS and mediated by toll‐like receptor 4 (TLR4) signalling pathways. Moreover, the potential inhibitors of TLR4 signalling for VSMCs proliferation in proliferative vascular diseases are discussed.  相似文献   

8.
This study focused on the differential expression levels of proteins that may exist between bone-derived and marrow-derived vascular endothelial cells (BVEC and MVEC). The vascular cells were isolated from trabecular bone regions and central marrow cavity regions of mouse long bones. Cells were cultured for 1 week to expand the population then separated from non-vascular cells using biotinylated isolectin B4, streptavidin-coated metallic microbeads, and a magnetic column. After an additional week of culture time, RNA was isolated from both cell types and compared using microarray analysis. RT-PCR was used to confirm and relatively quantitate the RNA messages. The bone-derived cells expressed more aldehyde dehydrogenase 3A1 (ALDH3A1), Secreted Modular Calcium-2 (SMOC-2), CCAAT enhancer binding protein (C/EBP-beta), matrix metalloproteinase 13 (MMP-13), and annexin 8 (ANX8) than the marrow-derived cells. Spalpha and matrix GLA-protein (MGP) were produced in greater abundance by the marrow-derived cells. This study reveals that there are profound and unique differences between the vasculature of the metaphysis as compared to that of the central marrow cavity. The unique array of proteins expressed by the bone-derived endothelial cells may support growth of tumors from cancer cells that frequently metastasize and lodge in the trabecular bone regions.  相似文献   

9.
10.
Intercellular communication among autonomic nerves, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) plays a central role in an uninterrupted regulation of blood flow through vascular contractile machinery. Impairment of this communication is linked to development of vascular diseases such as hypertension, cerebral/coronary vasospasms, aortic aneurism, and erectile dysfunction. Although the basic concept of the communication as a whole has been studied, the spatiotemporal correlation of ECs/VSMCs in tissues at the cellular level is unknown. Here, we show a unique VSMC response to ECs during contraction and relaxation of isolated aorta tissues through visualization of spatiotemporal activation patterns of smooth muscle myosin II. ECs in the intimal layer dictate the stimulus‐specific heterogeneous activation pattern of myosin II in VSMCs within distinct medial layers. Myosin light chain (MLC) phosphorylation (active form of myosin II) gradually increases towards outer layers (approximately threefold higher MLC phosphorylation at the outermost layer than that of the innermost layer), presumably by release of an intercellular messenger, nitric oxide (NO). Our study also demonstrates that the MLC phosphorylation at the outermost layer in spontaneously hypertensive rats (SHR) during NO‐induced relaxation is quite high and approximately 10‐fold higher than that of its counterpart, the Wister–Kyoto rats (WKY), suggesting that the distinct pattern of myosin II activation within tissues is important for vascular protection against elevated blood pressure.  相似文献   

11.
Molecular signal transduction in vascular cell apoptosis   总被引:18,自引:0,他引:18  
GengYJ 《Cell research》2001,11(4):253-264
INTRODUCTIONApoptosis represents a model of genetically pro--grammed ce1l death and a major mechanism bywhiCh tissue removes unwanted, aged or damagedce1ls. Although cells of mammalian tissues consist ofa broad dtwsity of phenotypes and g6notypes, during the developmeat of apoptosis, all cell types un-dergo similar morphological alteratiOns include chro-matin compaction and margination, nuclear conden-sation and fragmentation, and cell body sbIinkageand b1ebbingf1l. Characteristic apopto…  相似文献   

12.
Vascular injury, remodeling, as well as angiogenesis, are the leading causes of coronary or cerebrovascular disease. The blood vessel functional imbalance trends to induce atherosclerosis, hypertension, and pulmonary arterial hypertension. As several genes have been identified to be dynamically regulated during vascular injury and remodeling, it is becoming widely accepted that several types of non-coding RNA, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are involved in regulating the endothelial cell and vascular smooth muscle cell (VSMC) behaviors. Here, we review the progress of the extant studies on mechanistic, clinical and diagnostic implications of miRNAs and lncRNAs in vascular injury and remodeling, as well as angiogenesis, emphasizing the important roles of miRNAs and lncRNAs in vascular diseases. Furthermore, we introduce the interaction between miRNAs and lncRNAs, and highlight the mechanism through which lncRNAs are regulating the miRNA function. We envisage that continuous in-depth research of non-coding RNAs in vascular disease will have significant implications for the treatment of coronary or cerebrovascular diseases.  相似文献   

13.
Summary Cholesterol oxidase (3-hydroxy-steroid oxidase) catalyzes the oxidation of cholesterol to 4-cholesten-3 one and other oxidized cholesterol derivatives. The purpose of the present study was to investigate its effects on cultured vascular smooth muscle cells. Cultured rabbit aortic smooth muscle cells were morphologically altered after exposure to cholesterol oxidase in the presence of culture medium containing 10% fetal calf serum. If fetal calf serum was absent, cells were unaffected by the treatment. The extent of morphological change of the smooth muscle cells was dependent upon the time of exposure to the enzyme and the concentration of cholesterol oxidase employed. After moderate treatment with cholesterol oxidase, cells excluded trypan blue. Further, a specific mitochondrial marker DASPMI (dimethyl aminostyryl-methyl-pyridiniumiodine) which was used as a fluorescent index of cell viability, revealed that cell viability was unchanged after moderate cholesterol oxidase treatment. Nile red, a hydrophobic probe which selectively stains intracellular lipid droplets, was applied to detect the cellular lipid content after treatment with cholesterol oxidase. Cellular nile red fluorescence intensity increased linearly with the time and concentration of cholesterol oxidase treatment. These results demonstrate that cholesterol oxidase alters lipid deposition in the cell and changes cell morphology. The primary site of action of cholesterol oxidase appears to be independent of the cell membrane itself and instead is dependent upon the lipid content in the surrounding culture media. These changes occur prior to the cytotoxic effects of extensive oxidation. Because oxidized cholesterol may play an important role in the pathogenesis of atherosclerosis, our results have implications for intracellular accumulation of lipids in smooth muscle cells during the atherosclerotic lesion.  相似文献   

14.
A morphometric study of vascular smooth muscle cells in culture   总被引:1,自引:0,他引:1  
Summary Cultured arterial smooth muscle cells derived from different times in culture, different passages, and different species were evaluated by a combination of transmission electron microscopy and morphometry. The morphometric studies focused on point counting and monitored the following cellular components: lysosomes, myofilaments, mitochondria, ribosomes, and rough endoplasmic reticulum (RER). Percent volume composition values for the organelles involved in protein synthesis, namely ribosomes and RER, show significant fluctuations with time. Consistent with these observations, the cells showed increasing myofilaments during the early weeks in culture, which subsequently decreased significantly. The data also indicate that rabbit cells in culture may become synthetically quiescent with time and the distribution of cellular components is altered with each succeeding passage. Cultured calf (bovine) cells exhibit similar activity periods compared to rabbit but show a significantly higher lysosomal and lower myofilament content than rabbit. Calf cells could not be maintained for longer than 21 days in the absence of ascorbate, whereas ascorbate affects the ultrastructure of rabbit cells less dramatically. Age, passage, and donor, among others, are important considerations for studying in vitro smooth muscle cells. With proper morphologic and morphometric monitoring, these smooth muscle cell culture systems can be important tools in the study of aging or pathologic processes, or both. This work was presented as partial fulfillment for the degree of Ph.D. This work was supported by National Institutes of Health Grants HL-13262, HL-19717, and AG-00001.  相似文献   

15.
Hematopoietic stem cells (HSC) are multi-potent cells that function to generate a lifelong supply of all blood cell types. During mammalian embryogenesis, sites of hematopoiesis change over the course of gestation: from extraembryonic yolk sac and placenta, to embryonic aorta-gonad-mesonephros region, fetal liver, and finally fetal bond marrow where HSC reside postnatally. These tissues provide microenviroments for de novo HSC formation, as well as HSC maturation and expansion. Within adult bone marrow, HSC self-renewal and differentiation are thought to be regulated by two major cellular components within their so-called niche: osteoblasts and vascular endothelial cells. This review focuses on HSC generation within, and migration to, different tissues during development, and also provides a summary of major regulatory factors provided by osteoblasts and vascular endothelial cells within the adult bone marrow niche.  相似文献   

16.
Expression of matrix GLA protein (MGP), an alleged calcification inhibitor, is increased in calcified arteries. We used calcifying vascular cells (CVC) that form calcified nodules in vitro to clarify the importance of MGP in vascular cell calcification and differentiation. Unexpectedly, MGP dose-dependently increased calcification in CVC. It also increased expression of the osteogenic marker Cbfal, while decreasing expression of the smooth muscle marker alpha-actin as assessed by immunoblotting. Bone morphogenetic protein-2 (BMP-2), a known osteoinductive factor also increased calcification and osteogenic differentiation in CVC. We hypothesized that the effect of MGP was linked to that of BMP-2 since previous studies show that MGP modulates BMP-2 activity. Therefore, we compared the effect of MGP at different levels of exogenous BMP-2. Results showed that high BMP-2 levels significantly increased the stimulatory effect of low levels of MGP. A relative inhibition of calcification was observed at intermediate levels of MGP and a trend towards renewed stimulation at high levels of MGP. Thus, addition of MGP either promoted or inhibited calcification, depending on the relative amounts of BMP-2 and MGP. This was confirmed in human CVC with different relative expression of BMP-2 and MGP. Calcification in CVC with high relative expression of BMP-2 was inhibited by MGP, while calcification in CVC with low relative expression of BMP-2 was stimulated by MGP. MGP and BMP-2 both accelerated nodule formation, but had opposite effects on nodule size; MGP decreased while BMP-2 increased nodule size. The effect of BMP-2 may partly be explained by a BMP-2 induced decrease in MGP expression. Together, our results suggest that the effect of MGP on calcification and osteogenic differentiation is determined by availability of BMP-2.  相似文献   

17.
《Cell reports》2023,42(8):112869
  1. Download : Download high-res image (187KB)
  2. Download : Download full-size image
  相似文献   

18.
Normal mammalian vitreous humor maintains its avascularity after regression of hyaloid vessels. Neovascularization in adults is only detected under pathological conditions which suggests that antiangiogenic factors are present in the vitreous humor. To elucidate the mechanism of vitreal angiogenic inhibition, we investigated the effect of vitreous humor on cultured vascular endothelial cells. When bovine aortic endothelial cells were cultured in the presence of bovine vitreous humor in medium, a decrease in cell viability was observed within 24 h. Ascorbic acid from vitreous humor has been identified as a cell death inducing factor with high performance liquid chromatography (HPLC) and molecular mass analysis. Ascorbic acid reduced endothelial cell viability at concentrations normally present in vitreous humor. This effect was completely inhibited by antioxidants, N-acetylcysteine and catalase. Amongst the ascorbic acid derivatives tested, ascorbic acid 2-phosphate did not induce cell death, suggesting that the production of ascorbyl radical is required for induction of cell death. Furthermore, capillary formation in three-dimensional collagen gel cultures characteristic of vascular endothelial cells were disrupted in the presence of ascorbic acid. Since ascorbic acid is highly concentrated in ocular tissues, especially in vitreous humor, it may function as a neovascularization inhibitor.  相似文献   

19.
Osteoarthritis (OA) is considered to be a highly heterogeneous disease with progressive cartilage loss, subchondral bone remodeling, and low-grade inflammation. It is one of the world's leading causes of disability. Most conventional clinical treatments for OA are palliative drugs, which cannot fundamentally cure this disease. The stromal vascular fraction (SVF) from adipose tissues is a heterogeneous cell population. According to previous studies, it contains a large number of mesenchymal stem cells, which have been used to treat OA with good therapeutic results. This safe, simple, and effective therapy is expected to be applied and promoted in the future. In this paper, the detailed pathogenesis, diagnosis, and current clinical treatments for OA are introduced. Then, clinical studies and the therapeutic mechanism of SVF for the treatment of OA are summarized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号