首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have analysed a kinetic model of axonal transport by simulating experimental tracer profiles. The existence of three phases of axoplasmic transport is assumed: fast anterograde, slow anterograde and retrograde. Each phase has its characteristic velocity. Transported materials are postulated to shift between these phases. Also catabolism and sequestration of material is allowed for in our model. Thus, we have set up equations which contain axonal transport, diffusion and cross-over terms. The rate constants of material shifts were determined by computer fitting to experimental data. Best-fitted values of the rate constants for transfer of material between the fast and slow phases were both 2 X 10(-5) sec-1, while the rate constants for transfer between the fast and retrograde phases were both 1 X 10(-5) sec-1. The rate constant of material loss from the slow phase to the extracellular space was 1 X 10(-6) sec-1. The material shift between the slow and retrograde phases was negligibly small. These data show that there is exchange of material between the fast and slow phases and between the fast and retrograde phases. However, there is no significant exchange between the slow and retrograde phases. Diffusion was found to have only a minor effect on the profiles. The velocity of the fast anterograde track in cold-blooded animals was predicted to be around 200 mm/day, or, in other words, to be close to experimentally observed values of the fast anterograde component of axonal transport.  相似文献   

2.
Mechanism of axoplasmic transport   总被引:7,自引:0,他引:7  
  相似文献   

3.
1) Fast axoplasmic transport in mammalian nerve in vitro was studied using an isotope labeling technique. The rate of outflow in cat sciatic nerve fibers of 410 mm/day in vitro was reduced at temperatures below 38°C with a Q10 of 2.0 in the range 38–18°C and a Q10 of 2.3 at 38–13°C. 2) At a temperature of 11°C a partial failure of transport occurred. At temperatures below 11°C a complete block of fast axoplasmic transport occurred, a phenomenon termed “cold-block.” No transport at all was seen over the temperature range of 10–0°C for times lasting up to 48 hr. 3) Transport was resumed after a period of cold-block lasting up to 22 hr when the nerves were brought back to a temperature of 38°C. Some deleterious effects due to cold-block were seen in the recovery phase as indicated by a reduction in crest amplitude, change in its form, and slowed rate. 4) The ∼P level (combined ATP and creatine phosphate) remained near control level in nerves kept at low or cold-block temperatures for times as long as 64 hr. The reduction in fast axoplasmic transport rate seen at low temperatures for times up to 22 hr was therefore considered due to a decrease in the utilization of ATP, a concept in accord with the “transport filament” model proposed to account for fast axoplasmic transport. 5) The sloping of the front of the crest over the temperature range of 18–13°C suggests an additonal factor at the lower temperatures. A disassembly of microtubules is discussed as a possible explanation of the cold-block phenomenon.  相似文献   

4.
The origin of axoplasmic proteins is central for the biology of axons. For over fifty years axons have been considered unable to synthesize proteins and that cell bodies supply them with proteins by a slow transport mechanism. To allow for prolonged transport times, proteins were assumed to be stable, i.e., not degraded in axons. These are now textbook notions that configure the slow transport model (STM). The aim of this article is to cast doubts on the validity of STM, as a step toward gaining more understanding about the supply of axoplasmic proteins. First, the stability of axonal proteins claimed by STM has been disproved by experimental evidence. Moreover, the evidence for protein synthesis in axons indicates that the repertoire is extensive and the amount sizeable, which disproves the notion that axons are unable to synthesize proteins and that cell bodies supply most axonal proteins. In turn, axoplasmic protein synthesis gives rise to the metabolic model (MM). We point out a few inconsistencies in STM that MM redresses. Although both models address the supply of proteins to axons, so far they have had no crosstalk. Since proteins underlie every conceivable cellular function, it is necessary to re-evaluate in-depth the origin of axonal proteins. We hope this will shape a novel understanding of the biology of axons, with impact on development and maintenance of axons, nerve repair, axonopathies and plasticity, to mention a few fields.  相似文献   

5.
Axoplasmic transport of free 3H-leucine has been studied in vivo in the pike olfactory nerve following application of labeled leucine to the olfactory mucosa. A considerable amount of free 3H-leucine is transported at constant velocity along the axon in the form of a distinct peak. The maximum transport velocity for free 3H-leucine is the same as for rapidly transported 3H-protein (130 and 135 mm/day, respectively, at 19 degrees C). Microtubule inhibitors block or significantly reduce the amount of free 3H-leucine transported, but do not influence the transport velocity. Disruption of the oxygen supply abolishes free 3H-leucine transport, so that this phenomenon cannot be explained by diffusion. The amount of free leucine in the rapidly moving peak decreases with time and distance along the axon and is not detectable after 5 h or more. The transported 3H-leucine is not derived from the circulation or from proteolysis of rapidly transported proteins. This study may help to resolve the controversy over the axoplasmic transport of free amino acids since it shows that free 3H-leucine is transported rapidly but does not travel by rapid axoplasmic transport to the end of axons longer than about 30 mm.  相似文献   

6.
The axonal transport of neurosecretory material was studied in neurosecretory axons of the supraoptico-posthypophyseal system after in-situ transection of the median eminence. Two hours, 8 h, and 18 h after the lesion, both vasopressin and oxytocin antibodies revealed progressive accumulations of immunoreactive material not only in the proximal but also in the distal stumps of the transected axons. The electron-microscopic examination of these axonal portions revealed that such intense immunopositive labelings could be correlated, in both stumps, to a conspicuous accumulation of neurosecretory granules. It is concluded that, under normal physiological conditions, a significant amount of axoplasmic neurosecretory material is transported in retrograde direction and that such a retrograde transport mainly involves neurosecretory granules.  相似文献   

7.
Studies of a multidrug-resistant variant (DC-3F/VCRd-5L) of Chinese hamster lung cells selected for resistance to vinca alkaloids revealed marked alterations in transport and intracellular binding of [3H]vincristine compared to parental DC-3F cells. Influx of [3H]vincristine in DC-3F cells appears to be an equilibrating, but mediated, process. Although saturation kinetics for [3H]vincristine influx were not demonstrated, an extremely high temperature-dependence (Q10 27-37 degrees C = 5-6) and trans-inhibition of influx following preloading of cells with nonradioactive vincristine argue in favor of a carrier-mediated process. Efflux of [3H]vincristine from parental cells conformed to first-order kinetics (t1/2 37 degrees = 3.6 +/- 0.4) and exhibited a lower temperature-dependence (Q10 27-37 degrees C = 3-3.5) than influx. In variant vs. parental cells, influx of [3H]vincristine was reduced 24-fold and efflux was increased two-fold, accounting for the large (approximately 48-fold) reduction in steady-state level of exchangeable drug accumulating in variant cells. Otherwise, transport of [3H]vincristine in these cells showed characteristics similar to parental DC-3F cells. Also, the rate and amount of intracellular binding of [3H]vincristine in variant cells was almost 40-fold lower than in parental cells. These alterations in influx and efflux of [3H]vincristine and its intracellular binding appear to account, at least to a major extent, for the high level of resistance (2,750-fold) of this variant to vinca alkaloids. In contrast, cross-resistance of this variant to daunomycin (178-fold) could be explained only minimally by a transport alteration. Only a two-fold increase in efflux of [3H]daunomycin was demonstrated in variant vs. parental cells along with some decrease in intracellular binding. Influx of [3H]daunomycin was unaltered. In view of these results, we conclude that these two agents most likely do not share the same route for entry in these cells but might share the same efflux route.  相似文献   

8.
Summary Unmodified vinblastine (VLB) targeted through one of the antigen combining sites of the hybrid-hybrid 28.19.8 monoclonal is potentially more effective in suppressing the growth of established MAWI tumour xenografts implanted on nude mice than free VLB in the absence of the targeting agent, presumably due to an increased local drug concentration. Our efficacy results in this study suggest that drug, specifically removed from the circulation by hybrid-hybrid antibody previously located to the tumour mass, can be made available in a pharmacologically active from. Histological analysis of the treated tumours revealed dramatic changes in the tumour organisation with only a few surviving tumour cells with altered morphology.  相似文献   

9.
10.
Retrograde axoplasmic transport: its continuation as anterograde transport   总被引:11,自引:0,他引:11  
T Abe  T Haga  M Kurokawa 《FEBS letters》1974,47(2):272-275
  相似文献   

11.
Calcium and the mechanism of axoplasmic transport   总被引:2,自引:0,他引:2  
S Ochs 《Federation proceedings》1982,41(7):2301-2306
Using desheathed cat peroneal nerves in in vitro studies, Ca2+ was recently shown to be required to maintain axoplasmic transport. Calmodulin was also shown to be present in nerve and to participate in transport. These findings open up new possibilities for a better understanding of the underlying mechanism of transport. In the transport filament model, the materials transported are bound to a common carrier, the transport filaments, which are moved along the microtubules by means of an interaction with the side arms of the microtubules. This is an energy-requiring process that depends on a supply of ATP, which is utilized by the Ca2+,Mg2+-ATPase associated with the side arms of the microtubules. The Ca2+,Mg2+-ATPase is activated by calmodulin at the low micromolar levels of free Ca2+ present in the axon. The level is kept low by calcium-regulatory mechanisms that include mitochondria, endoplasmic reticulum, and calcium-binding proteins. Nerves exposed to higher-than-normal concentrations of Ca2+ in the medium show an increased number of particles in these organelles as expected of their Ca2+-regulatory role. The nature of the calmodulin-Ca,Mg-ATPase complex associated with the side arms is discussed on the basis of the transport model. Also discussed is slow transport, which is explained on the basis of the model as a differential binding affinity to the transport filaments.  相似文献   

12.
Immunization of Wistar rats with thymus dependent antigens (sheep red blood cells-SRBC) is accompanied by a reliable increase in the synthesis of RNA and proteins in thalamic cerebral cortex and spinal marrow (48 hrs after antigen injection) and also in an increase in the intensity of rapid axoplasmic transport (RAT) along motor fibers of sciatic nerve (5,48,72 hrs following the beginning of immunization). There was a consecutive augmentation in AFC number in mesenteric and partly in inguinal lymph nodes (96 hrs after SRBC injection). Thus, time dependence between immunogenesis and axoplasmic transport in experimental animals (Wistar rats) was determined for the first time. It identifies another, previously unstudied, channel in interactions of immune and nervous systems.  相似文献   

13.
Summary Capsaicin injected into the scrotal skin of rats was observed to induce a decrease in the amount of horseradish peroxidase (HRP) transported in the pudendal nerve to the sixth lumbar dorsal root ganglion on the pretreated side. This was seen as a decrease in the number of HRP-labelled neurones compared to the control side. A morphometric study confirmed that the effect of capsaicin was exerted predominantly on the small neurones. Injection of nerve growth factor (NGF) into the pudendal nerve prevented the deleterious effects of capsaicin, thereby suggesting a possible site of action and mechanism for the effect of capsaicin on peripheral nerves.  相似文献   

14.
Transduction mechanism for modulation of axoplasmic transport by neurotransmitters was studied using cultured mouse superior cervical ganglion cells. The transported particles were analyzed with a computer-assisted video-enhanced differential interference contrast microscope system. Acetylcholine depressed and adrenaline increased axoplasmic transport. GTP-binding proteins linked with both receptors activate or inactivate adenylyl cyclase, thereby altering the intracellular concentration of cyclic AMP. The cyclic AMP activates protein kinase A, which phosphorylates certain enzymes and the enzymes in turn phosphorylate motor proteins. An inhibitor of protein kinase A, KT5720, decreases the number of the transported particles. In a stable state the cyclic AMP level stays at a normal level. Treatment with neurotransmitters causes a change in this level, which changes the activity of protein kinase A and thus decreases or enhances the phosphorylation of motor proteins. These changes are involved in the modulation of axoplasmic transport. In honor of Dr. Sidney Ochs.  相似文献   

15.
16.
17.
Vinca alkaloids were used to study the role of retrograde axon transport (RT) in activating neuron perikaryal repair response to nerve transection. Mouse lumbar dorsal root ganglia (DRG) (L4-L6) were excised 48 hours after unilateral transection of the sciatic nerve and ornithine decarboxylase (ODC) activity determined. ODC activity in DRG ipsilateral to nerve transection was increased 10–20 fold over contralateral values. Typical ODC activities in ipsilateral and contralateral DRG samples were 6.18±1.4 and 0.31±0.09 pmol14CO2 released/h/3DRG, respectively. Systemic administration of single doses of either vincristine (1 mg/kg) or vinblastine (5 mg/kg) immediately prior to axotomy attenuated ODC induction in ipsilateral DRG by 39% and 47%, respectively. A direct inhibition of ODC activity in the DRG appears unlikely since only high concentrations of vinblastine (0.5–1.0 mM) were able to inhibit ODC activity in vitro. We suggest vinca alkaloids inhibit ODC induction as a consequence of distupting retrograde axonal transport. Interruption of this intracellular communication mechanism may be etiologically linked to the distal axon degeneration which follows repetitive exposure to vinca alkaloids and other agents that induce toxic axonal neuropathy.  相似文献   

18.
19.
Tubulin proteins in mouse retinal ganglion cell (RGC) neurons were analyzed to determine whether they undergo posttranslational processing during axoplasmic transport. Alpha- and beta-tubulin comprised heterogeneous proteins in the primary optic pathway (optic nerve and optic tract) when examined by two-dimensional (2D) PAGE. In addition, however, alpha-tubulin exhibited regional heterogeneity when consecutive 1.1-mm segments of the optic pathway were analyzed separately. In proximal segments, alpha-tubulin consisted of two predominant proteins separable by isoelectric point and several less abundant species. In more distal segments, these predominant proteins decreased progressively and the alpha-tubulin region of the gel was represented by less abundant multiple forms only; beta-tubulin region of the gel was represented by less abundant multiple forms only; beta- tubulin was the same in all segments. After intravitreal injection of [3H]proline to mice, radiolabeled alpha- and beta-tubulin heteroproteins were conveyed together at a rate of 0.1-0.2 mm/d in the slowest phase of axoplasmic transport. At 45 d postinjection, the distribution of radiolabeled heterogeneous forms a alpha- and beta- tubulin in consecutive segments of optic pathway resembled the distribution of unlabeled proteins by 2D PAGE, indicating that regional heterogeneity of tubulin arises during axonal transport. Peptide mapping studies demonstrated that the progressive alteration of alpha- tubulin revealed by PAGE analysis cannot be explained by contamination of the alpha-tubulin region by other proteins on gels. The results are consistent with the posttranslational processing of alpha-tubulin during axoplasmic transport. These observations, along with the accompanying report (J. Cell Biol., 1982, 94:150-158), provide additional evidence that CNS axons may be regionally specialized.  相似文献   

20.
The interactions of the vinca alkaloid drugs catharanthine and vindoline with tubulin have been investigated and compared with those of vinblastine and vincristine. Both drugs were found to be less effective in bringing about the inhibition of tubulin self-assembly into microtubules than vincristine and vinblastine, the drug to protein molar ratio required being 3 orders of magnitude greater. An analytical ultracentrifuge study has shown that catharanthine can induce the self-association of tubulin into linear indefinite polymers with an efficacy that is 75% that of vinblastine or vincristine, the intrinsic dimerization constant for the liganded protein being K2 congruent to 1 x 10(5) M-1. The effect of vindoline was marginally detectable. Binding studies of catharanthine using the gel batch and fluorescence perturbation techniques showed a polymerization-linked binding of one catharanthine molecule per tubulin alpha-beta dimer with a binding constant of (2.8 +/- 0.4) x 10(3) M-1. For vindoline, binding to tubulin was marginally detectable by fluorescence spectroscopy, although addition of vindoline to tubulin did generate a difference spectrum. It was concluded that the binding of vinblastine/vincristine to tubulin and its consequences are determined by the interaction of the indole part of catharanthine with tubulin, the role of vindoline being that of an anchor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号