首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

New Zealand has three species of honeyeaters, all of which feed on nectar, fruit, and ‘insects’. There is disagreement between published data and those becoming available from long-term studies on the relative proportion of these items in the diet. The effect of factors such as body size, dominance status, degree of movement, and time of year on diet and foraging behaviour are outlined, and predictions of differences between species and between sexes are made. A brief comparison of foraging in relation to the flora is made between New Zealand and Australian species.  相似文献   

2.
Seasonal changes in the abundances of five species of honey-eaters were assessed in relation to the flowering phenology of Banksia menziesii in banksia woodland near Perth, Western Australia. The total number of honeyeaters was significantly correlated to the number of inflorescences ofB. menziesii. New Holland Honeyeaters. Brown Honeyeaters and Western Spinebills were present throughout the year, whereas the larger honeyeaters (Red and Little Wattlebirds) were observed when B. menziesii was flowering. The foraging behaviours of the Little Wattlebirds, New Holland Honeyeaters, Brown Honeyeaters and Western Spinebills were similar and all were likely to effect pollination of B. menziesii florets. Differences in their foraging position at an inflorescence, number and direction of foraging probes, and the time spent at an inflorescence were minimal. Western Spinebills used inflorescences lower in the tree crown than the other species. Movements to inflorescences on different plants were inversely related to honeyeater size. Smaller honeyeaters were frequently chased from inflorescences by the larger species, increasing the proportion of distant foraging movements made by the smaller species. Also these interrupted visits were of shorter duration than uninterrupted visits. Visitation by smaller species, especially the Brown Honeyeater, may result in more cross pollinations although the effect on the reproductive success of B, menziesii is unknown.  相似文献   

3.
The movements of hummingbirds between inflorescences of scarlet gilia (Ipomopsis aggregata) were studied. These movements exhibited the following patterns: (1) Although the hummingbirds appeared to avoid moving to the previous inflorescence, no significant correlation was found between the directions of successive inter-inflorescence movements. (2) The frequency distribution of inter-inflorescence flight distances was found to be leptokurtic. (3) The hummingbirds were more likely to move to an inflorescence the larger and/or closer it was. (4) The hummingbirds moved to inflorescences of greatest apparent size (i.e. ratio of number of flowers available to distance from present inflorescence) more often than they moved to the largest inflorescence, the closest infloresence, or the inflorescence estimated to yield the greatest rate of energy gain. (5) The frequency distribution of moves to the inflorescence having the ith greatest apparent size is well fitted by a geometric distribution. This is consistent with the hummingbrids choosing the inflorescence of greatest apparent size (excluding the previous inflorescence) from within some scanning sector. These movement patterns are consistent with the expectations of optimal foraging theory only if the hummingbirds cannot or do not determine the directions of possible inflorescences relative to the direction of arrival at the present inflorescence and if they cannot assess independently the sizes and distances of possible inflorescences.  相似文献   

4.
5.
I developed two versions of the twin threshold model (TTM) to assess risk-sensitive foraging decisions by rufous hummingbirds. The model incorporates energy thresholds for both starvation and reproduction and assesses how three reward distributions with a common mean but different levels of variance interact with these critical thresholds to determine fitness. Fitness, a combination of survival and reproduction, is influenced by both the amount of variance in the distributions and the relative position of the common mean between the thresholds. The model predicts that risk-intermediate foraging is often the optimal policy, and that risk aversion is favoured as the common mean of the distributions approaches the starvation threshold, whereas risk preference is favoured as the common mean approaches the reproduction threshold. Tests with free-living hummingbirds supported these predictions. Hummingbirds were presented with three distributions of nectar rewards that had a common mean but Nil, Moderate or High levels of variance. Birds preferred intermediate levels of variance (Moderate) when presented with all three rewards simultaneously, and became more risk-averse as the mean of the distributions was decreased but more risk-prone as the mean was increased. Birds preferred Nil when it was paired with Moderate or with High, but preferred Moderate in the presence of Nil and High together. This reversal of preference is a violation of regularity, conventionally interpreted as irrational choice behaviour. I provide an alternative version of the TTM demonstrating that violations of regularity can occur when relative instead of absolute evaluation mechanisms are used.  相似文献   

6.
Wing morphology and flight kinematics profoundly influence foraging costs and the overall behavioral ecology of hummingbirds. By analogy with helicopters, previous energetic studies have applied the momentum theory of aircraft propellers to estimate hovering costs from wing disc loading (WDL), a parameter incorporating wingspan (or length) and body mass. Variation in WDL has been used to elucidate differences either among hummingbird species in nectar-foraging strategies (e.g., territoriality, traplining) and dominance relations or among gender-age categories within species. We first demonstrate that WDL, as typically calculated, is an unreliable predictor of hovering (induced power) costs; predictive power is increased when calculations use wing length instead of wingspan and when actual wing stroke amplitudes are incorporated. We next evaluate the hypotheses that foraging strategy and competitive ability are functions of WDL, using our data in combination with those of published sources. Variation in hummingbird behavior cannot be easily classified using WDL and instead is correlated with a diversity of morphological and physiological traits. Evaluating selection pressures on hummingbird wings will require moving beyond wing and body mass measurements to include the assessment of the aerodynamic forces, power requirements, and power reserves of hovering, forward flight, and maneuvering. However, the WDL-helicopter dynamics model has been instrumental in calling attention to the importance of comparative wing morphology and related aerodynamics for understanding the behavioral ecology of hummingbirds.  相似文献   

7.
8.
Twin rhesus monkeys, born in a laboratory cage, were reared alone with their mother for a year. Observations were made of mother-infant interactions. Differences between the infants which concerned the amount of time spent off the mother seem to have been due to differences in the behaviour of the mother towards the two twins, whereas differences between measures of behaviour while off the mother seem to have been due to differences between the twins. The twins also differed in activity and in responses to mildly frightening or strange situations. The behaviour of the twins was compared with that of two single infants reared under the same cage conditions and also alone with their mothers. Some differences were found between the twins and the singles in mother-infant interaction, and there were also some differences in activity and in responses to mildly frightening or strange situations.  相似文献   

9.
Interspecific competition can strongly influence community structure and limit the distribution and abundance of species. One of the main factors that determine hummingbird community structure is competition for food. The temporal and spatial distribution of nectar has a strong impact on hummingbird assemblages, shaping foraging niches according to hummingbird dominance and foraging strategy. We investigated whether body size and the degree of aggressive dominance influence feeding behaviour of hummingbirds in a temperate forest in northwestern Mexico (El Palmito, Mexico) when winter migrant hummingbirds are present in the community. First, we determined the dominance status of hummingbirds and evaluated the relationship between dominance and body mass, wing disc loading and migratory status. Secondly, we determined how hummingbird species used plant species differently. Thirdly, we examined whether the most dominant hummingbird species defended floral patches with more energy and/or with a larger number of flowers. At each flower patch, hummingbird species, number of hummingbird interactions, feeding time and number of flowers present were recorded. The total number of calories available within each floral patch was also determined. Our results demonstrate that the dominance hierarchy of 13 hummingbird species (migratory and resident) was correlated with body size but not wing disc loading, and that members of the hummingbird community showed a clear separation in resource use (by plant species). Hummingbirds at the top of the dominance hierarchy defended and fed on the best flower patches, defined by the quantity of calories available. Hence, the feeding behaviour of hummingbirds at El Palmito depends on the abundance of plant species used by hummingbirds and on the amount of energy available from each flower patch. Thus, hummingbird body size, aggressive dominance and defence of quality flower patches determines niche partitioning among species.  相似文献   

10.
Summary The foraging behaviour of non-flying nectar feeding mammals has been examined rarely. The exudivorous yellow-bellied glider (Petaurus australis) was observed to feed extensively (70% of the total feeding observation time) on the nectar of all species of Eucalyptus present at a site in southeastern Australia. Gliders harvested nectar, and presumably pollen also, whenever eucalypt flowers were available and selected trees with 2–3 times as many flowers as that on trees randomly selected along a transect. The abundance of flowering trees varied temporally and, at times when few flowering trees were present, gliders chose trees with fewer flowers than at times when flowering trees were abundant. When flowering trees were superabundant or scarce, there was no relationship between the number of flowers in a tree and the duration of visits by gliders. However, at intermediate levels of abundance, the amount of time a glider spent in a tree was related to the number of flowers in a tree. Gliders devoted 90% of the time outside their dens to foraging and the above relationship is suggested to reflect two foraging options which maximize net energy gain for different abundances of flowering trees. Although gliders spent considerable lengths of time in individual trees feeding, initial deposition of cross pollen when gliders first arrive in a tree may be substantial and thus, may provide significant amounts of outcrossing for these eucalypts.  相似文献   

11.
12.
13.
Sexual differences in foraging and provisioning behaviour have been observed in several size-dimorphic seabird species. These differences are usually thought to be driven by size-related mechanisms such as the ability to compete for food or defend the nest. However, recent studies on monomorphic species suggest that sexual differences in foraging may arise independently of size. Selective forces driving sex-specific patterns are poorly known but essential to understand parental strategies. In this study, we examine sex differences in the provisioning behaviour of a monomorphic species, the Little Auk Alle alle . Using automated recording systems during two consecutive seasons at two colonies, we found that both sexes used a bimodal foraging strategy in which they regularly alternated single foraging trips of long duration with a cycle of several short-trips. The duration of long-trips was substantially longer in females than in males, and the sexes differed in the number of short-trips they performed in between long-trips, resulting in male-biased provisioning rates in both years. In species with a bimodal foraging strategy, long-trips have been interpreted as self-feeding trips to replenish body reserves. Our results therefore suggest that female Little Auks allocate more time to self-maintenance at the cost of chick provisioning, possibly due to different energetic constraints of the sexes prior and/or subsequent to chick-rearing. Our findings contribute to accumulating evidence that sex-specific foraging patterns may be widespread in sexually size-monomorphic seabird species.  相似文献   

14.
We examined whether sexual differences in trophic morphology are associated with sexual differences in foraging behavior through two laboratory experiments on rufous hummingbirds (Selasphorus rufus) designed to compare probing abilities (maximum extraction depths) and handling times of sexes at flowers. Bills of female S. rufus are about 10.5% longer than bills of males, and this difference was associated with sexual differences in foraging abilities. Maximum extraction depths of female S. rufus were significantly greater than those of males, and no overlap between the sexes was observed. Moreover, handling times of females were shorter than handling times of males at flowers having longer corollas (15 mm). Thus, because of their longer bills, female S. rufus have the potential to feed from longer flowers than males, and can do so more quickly. We suggest that no single mechanism is responsible for the evolution of sexual dimorphism in bill lengths of hummingbirds, but rather that the dimorphism probably reflects the combined effects of reproductive role division and intersexual food competition, and possibly, sexual selection.  相似文献   

15.
Most hypotheses attempting to explain the evolution of reversed sexual dimorphism (RSD) assume that size-related differences in foraging ability are of prime importance, but the studies on sex-specific differences in foraging behaviour remain scarce. We compare the foraging behaviour of males and females in a seabird species with a RSD by using several miniaturised activity and telemetry loggers. In red-footed boobies males are 5% smaller and 15% lighter than females, but have a longer tail than females. Both sexes spend similar time on the nest while incubating or brooding. When foraging at sea, males and females spend similar time foraging in oceanic waters, forage in similar areas, spend similar proportion of their foraging trip in flight, and feed on similar prey—flying fishes and flying squids—of similar size. However, compared to males, females range farther during incubation (85 km vs. 50 km), and furthermore feed mostly at the extremity of their foraging trip, whereas males actively forage throughout the trip. Males are much more active than females, landing and diving more often. During the study period, males lost mass, whereas females showed no significant changes. These results indicate that males and females of the red-footed boobies differ in several aspects in their foraging behaviour. Although some differences found in the study may be the direct result of the larger size of females, that is, the slightly higher speeds and deeper depths attained by females, others indicate clearly different foraging strategies between the sexes. The smaller size and longer tail of males confer them a higher agility, and could allow them to occupy a foraging niche different from that of females. The higher foraging effort of males related to its different foraging strategy is probably at the origin of the rapid mass loss of males during the breeding period. These results suggest that foraging differences are probably the reason for the differential breeding investment observed in boobies, and are likely to be involved in the evolution and maintenance of RSD.  相似文献   

16.
Growth rate has been established as a key parameter influencing foraging decisions involving the risk of predation. Through genetic manipulation, transgenic salmon bred to contain and transmit a growth hormone transgene are able to achieve growth rates significantly greater than those of unmanipulated salmon. Using such growth-enhanced transgenic Atlantic salmon, we directly tested the hypothesis that relative growth rates should be correlated with willingness to risk exposure to a predator. We used size-matched transgenic and control salmon in two experiments where these fish could either feed in safety, or in the presence of the predator. The first experiment constrained the predator behind a Plexiglas partition (no risk of mortality), the second required the fish to feed in the same compartment as the predator (a finite risk of mortality). During these experiments, transgenic salmon had rates of consumption that were approximately five times that of the control fish and rates of movement approximately double that of controls. Transgenic salmon also spent significantly more time feeding in the presence of the predator, and consumed absolutely more food at that location. When there was a real risk of mortality, control fish almost completely avoided the dangerous location. Transgenic fish continued to feed at this location, but at a reduced level. These data demonstrate that the growth enhancement associated with the transgenic manipulation increases the level of risk these fish are willing to incur while foraging. If the genetic manipulation necessary to increase growth rates is achievable through evolutionary change, these experiments suggest that growth rates of Atlantic salmon may be optimized by the risk of predation. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

17.
Y. Lubin  J. Henschel 《Oecologia》1996,105(1):64-73
We tested the alternative hypotheses that foraging effort will increase (energy maximizer model) or decrease (due to increased costs or risks) when food supply increased, using a Namib desert burrowing spider, Seothyra henscheli (Eresidae), which feeds mainly on ants. The web of S. henscheli has a simple geometrical configuration, comprising a horizontal mat on the sand surface, with a variable number of lobes lined with sticky silk. The sticky silk is renewed daily after being covered by wind-blown sand. In a field experiment, we supplemented the spiders' natural prey with one ant on each day that spiders had active webs and determined the response to an increase in prey. We compared the foraging activity and web geometry of prey-supplemented spiders to non-supplemented controls. We compared the same parameters in fooddeprived and supplemented spiders in captivity. The results support the costs of foraging hypothesis. Supplemented spiders reduced their foraging activity and web dimensions. They moulted at least once and grew rapidly, more than doubling their mass in 6 weeks. By contrast, food-deprived spiders increased foraging effort by enlarging the diameter of the capture web. We suggest that digestive constraints prevented supplemented spiders from fully utilizing the available prey. By reducing foraging activities on the surface, spiders in a prey-rich habitat can reduce the risk of predation. However, early maturation resulting from a higher growth rate provides no advantage to S. henscheli owing to the fact that the timing of mating and dispersal are fixed by climatic factors (wind and temperature). Instead, large female body size will increase fitness by increasing the investiment in young during the period of extended maternal care.  相似文献   

18.

Background

The indirect comparison of two interventions can be valuable in many situations. However, the quality of an indirect comparison will depend on several factors including the chosen methodology and validity of underlying assumptions. Published indirect comparisons are increasingly more common in the medical literature, but as yet, there are no published recommendations of how they should be reported. Our aim is to systematically review the quality of published indirect comparisons to add to existing empirical data suggesting that improvements can be made when reporting and applying indirect comparisons.

Methodology/Findings

Reviews applying statistical methods to indirectly compare the clinical effectiveness of two interventions using randomised controlled trials were eligible. We searched (1966–2008) Database of Abstracts and Reviews of Effects, The Cochrane library, and Medline. Full review publications were assessed for eligibility. Specific criteria to assess quality were developed and applied. Forty-three reviews were included. Adequate methodology was used to calculate the indirect comparison in 41 reviews. Nineteen reviews assessed the similarity assumption using sensitivity analysis, subgroup analysis, or meta-regression. Eleven reviews compared trial-level characteristics. Twenty-four reviews assessed statistical homogeneity. Twelve reviews investigated causes of heterogeneity. Seventeen reviews included direct and indirect evidence for the same comparison; six reviews assessed consistency. One review combined both evidence types. Twenty-five reviews urged caution in interpretation of results, and 24 reviews indicated when results were from indirect evidence by stating this term with the result.

Conclusions

This review shows that the underlying assumptions are not routinely explored or reported when undertaking indirect comparisons. We recommend, therefore, that the quality of indirect comparisons should be improved, in particular, by assessing assumptions and reporting the assessment methods applied. We propose that the quality criteria applied in this article may provide a basis to help review authors carry out indirect comparisons and to aid appropriate interpretation.  相似文献   

19.
Slug foraging paths recorded using time lapse video techniques under infra-red light were fitted to a correlated random walk model. Analyses were carried out on slugs in arenas where no food was present, as well as those containing commercial molluscicides at two rates of application. Slugs were found to search randomly in empty arenas and those containing commercial metaldehyde baits, but deviated from random search patterns when in the presence of commercial methiocarb bait. Differential attraction from a distance is suggested as a cause of these differences.  相似文献   

20.
1. In order to study and predict population distribution, it is crucial to identify and understand factors affecting individual movement decisions at different scales. Movements of foraging animals should be adjusted to the hierarchical spatial distribution of resources in the environment and this scale-dependent response to environmental heterogeneity should differ according to the forager's characteristics and exploited habitats. 2. Using First-Passage Time analysis, we studied scales of search effort and habitat used by individuals of seven sympatric Indian Ocean Procellariiform species fitted with satellite transmitters. We characterized their search effort distribution and examined whether species differ in scale-dependent adjustments of their movements according to the marine environment exploited. 3. All species and almost all individuals (91% of 122 individuals) exhibited an Area-Restricted Search (ARS) during foraging. At a regional scale (1000s km), foraging ranges showed a large spatial overlap between species. At a smaller scale (100s km, at which an increase in search effort occurred), a segregation in environmental characteristics of ARS zones (where search effort is high) was found between species. 4. Spatial scales at which individuals increased their search effort differed between species and also between exploited habitats, indicating a similar movement adjustment for predators foraging in the same habitat. ARS zones of the two populations of wandering albatross Diomedea exulans (Crozet and Kerguelen) were similar in their adjustments (i.e. same ARS scale) as well as in their environmental characteristics. These two populations showed a weak spatial overlap in their foraging distribution, with males foraging in more southerly waters than females in both populations. 5. This study demonstrates that predators of several species adjust their foraging behaviour to the heterogeneous environment and these scale-dependent movement adjustments depend on both forager and environment characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号