首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Brain type II Ca2+/calmodulin-dependent protein kinase was found to phoshorylate smooth muscle myosin, incorporating maximally 2 mol of phosphoryl per mol of myosin, exclusively on the 20,000 dalton light chain subunit. After maximal phosphorylation of myosin or the isolated 20,000 dalton light chain subunit by myosin light chain kinase, the addition of type II Ca2+/calmodulin-dependent protein kinase led to no further incorporation indicating the two kinases phosphorylated a common site. This conclusion was supported by two dimensional mapping of tryptic digests of myosin phosphorylated by the two kinases. By phosphoamino acid analysis the phosphorylated residue was identified as a serine. The phosphorylation by type II Ca 2+/calmodulin-dependent protein kinase of myosin resulted in enhancement of its actin-activated Mg2+-ATPase activity. Taken together, these data strongly support the conclusion that type II Ca2+/calmodulin-dependent protein kinase phosphorylates the same amino acid residue on the 20,000 dalton light chain subunit of smooth muscle myosin as is phosphorylated by myosin light chain kinase and suggest an alternative mechanism for the regulation of actin-myosin interaction.Abbreviations SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis - EGTA Ethylene Glycol Bis (-amino-ethyl ether)-N,N,N,N-Tetraacetic Acid - DTT Dithiothreitol - LC20 Gizzard Smooth Muscle Phosphorylatable 20 kDa Myosin Light Chain - LC17 Gizzard Smooth Muscle, 17 kDa Myosin Light Chain - H Chain Gizzard Smooth Muscle 200 kDa Myosin Heavy Chain - TPCK L-1-Tosylamido-2-Phenylethyl Chloromethyl Ketone - MOPS 3-(N-morpholino) Propanesulfonic Acid  相似文献   

2.
Gizzard myosin is phosphorylated by a kinase found in chicken gizzards. The 20,000 dalton light chains are the only subunits to show an appreciable extent of 32P incorporation. Phosphorylation requires trace amounts of Ca2+. The Mg2+-ATPase activity of gizzard myosin in the phosphorylated form is activated to an appreciable extent by skeletal actin, whereas the activation of the non-phosphorylated myosin is verylow. These results suggest that the Ca2+-sensitive regulatory mechanism of gizzard actomyosin is mediated via a kinase. In the presence of Ca2+ the onset of contraction and the resultant increase of the Mg2+-ATPase activity we suggest is due, at least partly, to the phosphorylation of the 20,000 dalton light chains. Whether or not Ca2+ binding by myosin is also essential remains to be established.  相似文献   

3.
A method is described for the preparation of high purity myosin from the left ventricle of pig heart. The purified myosin was free from nucleic acid, actin, tropomyosin, troponin, the 150,000 molecular weight protein and other contaminants. Analyses of subunits in the purified myosin were carried out on 3.5% acrylamide gel with 0.1% SDS. Of the total protein present in myosin, 11.3% was in the light chains; light chain 1 (LC1), 5.9% and light chain 2 (LC2), 5.4%. Urea gel electrophoresis of the purified myosin showed three closely spaced bands corresponding to the 20,000 dalton, the charge-modified 20,000 dalton and the phosphorylated 20,000 dalton components. The properties of the Ca2+-activated and K+-activated ATPases [EC 3.6.1.3] of the purified myosin were also studied. The Km values were 27 and 55 muM and the Vmax values were 0.263 and 0.317 mumole P1/mg/min for the Ca2+-activated and K+-activated ATPases, respectively. The pH-activity profiles and the effects of SH modification were of the skeletal myosin type except that the activities were lower.  相似文献   

4.
S49.1 Lymphoma cells were arrested in G1 phase of the cell cycle when treated with either 1 μM dexamethasone (Dex) or 0.5 mM N6, O2-dibutyryl cyclic adenosine 3′ :5′ -monophosphate (Bt2cAMP) plus 0.2 mM theophylline. However, the two agents had markedly different effects on aspects of polyamine and cyclic nucleotide metabolism within the arrested cells. Bt2cAMP had an early and pronounced inhibitory effect on ornithine decarboxylase (ODC) activity causing a decrease to 40% of control within 1 h. However, there was no significant inhibition of ODC activity in the Dex-treated cells until 4 h of exposure, at which time ODC activity was reduced to approximately 60% of the control value. Sadenosyl-L-methionine decarboxylase (SAMD) activity was reduced by both agents, Bt2cAMP having the more pronounced inhibitory effect. The activity of SAMD was reduced to 40% of control after 10 h of Dex, whereas Bt2cAMP reduced the activity to approximately 25% of control within 4 h. Intracellular polyamine pools were decreased rapidly in Dex-treated cells but not in those exposed to Bt2cAMP. Bt2cAMP decreased the amount of type I (PKI) and type II (PKII) cyclic AMP-dependent protein kinase (cAMP-PK) activity to 30% of control or less within 2 h. In contrast, Dex had very little effect on either PKI or PKII until 24 h, when cell viability was affected. The specific activity of both PKI and PKII remained significantly decreased in cells exposed to Bt2cAMP for 6 h and then resuspended in fresh medium. The rapid decrease in ODC activity in response to Bt2cAMP and the slow recovery after washout may be due to the marked decreases in total PKI and PKII activities. Dex, which had no effect on PKI and PKII specific activities, only slowly inhibited ODC activity and recovery of enzyme activity was rapid upon resuspension in fresh medium. These data further stress the importance of the maintenance of the cellular protein kinase pools in the regulation of the recovery time to growth inhibition in response to naturally occurring steroids and second messengers.  相似文献   

5.
Ca2+-phospholipid dependent phosphorylation of smooth muscle myosin   总被引:5,自引:0,他引:5  
Isolated myosin light chain from chicken gizzard has been shown to serve as a substrate for Ca2+-activated phospholipid-dependent protein kinase. Autoradiography showed that Ca2+-activated phospholipid-dependent protein kinase phosphorylated mainly the 20,000-dalton light chain of chicken gizzard myosin. Exogenously added calmodulin had no effect on myosin light chain phosphorylation catalyzed by the enzyme. The 20,000-dalton myosin light chain, both in the isolated form and in the whole myosin form, served as the substrate for this enzyme. In contrast to the isolated myosin light chain, the light chain of whole myosin was phosphorylated to a lesser extent by the Ca2+-activated phospholipid dependent kinase. Our results suggest the involvement of phospholipid in regulating Ca2+-dependent phosphorylation of the 20,000-dalton light chain of smooth muscle myosin.  相似文献   

6.
Addition of 1 mm dibutyryl cyclic AMP (Bt2cAMP) to cultures of mouse hepatoma cells, Hepa, specifically stimulates the synthesis of serum proteins including albumin. This stimulation is accompanied by an inhibition of cell proliferation. We have investigated these phenomena in synchronous cultures of Hepa. Proliferation of Hepa was arrested by isoleucine starvation. Synchronous growth was initiated by addition of complete growth medium or complete growth medium supplemented with 1 mm Bt2cAMP. S phase and mitosis were estimated by determinations of [3H]thymidine incorporation and by cell numbers. The rate of albumin synthesis relative to total protein synthesis was measured by pulse labeling cultures for 30 min with [3H]leucine and comparing amounts of immunoprecipitable label with trichloroacetic acid-precipitable label. Treatment of synchronous cultures with Bt2cAMP did not alter the duration of S phase or the onset of mitosis. The relative rate of albumin synthesis in Bt2cAMP-treated culture began increasing after mitosis. The timing of the Bt2cAMP stimulation of albumin synthesis was further investigated by adding Bt2cAMP to cultures of Hepa at various times after the initiation of synchronous growth. The relative rate of albumin synthesis was then measured at a fixed postmitotic time. An increased relative rate of albumin synthesis was observed only in cultures exposed to Bt2cAMP before or during S phase. Thus the postmitotic increase in the synthesis of albumin requires the presence of Bt2cAMP during S phase.  相似文献   

7.
The production and secretion of multiple peptide hormones and tyrosine hydroxylase by the human neuroblastoma cell line NB-1 and the effects of dibutyryl cAMP (Bt2cAMP) and phorbol esters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on them were investigated. The presence of messenger RNAs (mRNAs) of vasoactive intestinal peptide (VIP)/peptide histidine methionine (PHM), preprotachykinin, and tyrosine hydroxylase was detectable in the cytoplasm of cultured NB-1 cells by in situ hybridization. Treatment with Bt2cAMP and TPA markedly increased the number of cells immunoreactive to VIP, PHM, neuropeptide Y, Met-enkephalin, substance P and tyrosine hydroxylase and also the contents of VIP and Met-enkephalin in the culture medium. Bt2cAMP and TPA induced morphological changes characteristic of endocrine differentiation, such as an increase in neuroendocrine granules and the development of rough endoplasmic reticulum and Golgi apparatus. The results indicated that treatment with Bt2cAMP and TPA induces the expression of multiple genes of peptide hormone and tyrosine hydroxylase and increases hormone production and secretion through morphological changes into endocrine cells.  相似文献   

8.
Livers from fed male rats were perfused in a nonrecycling system for 60 min with a medium containing 100 mg/dl glucose, 3 g/dl bovine serum albumin, and ~0.5 mm oleic acid, with or without 20 μm dibutyryl cyclic adenosine-3′,5′-monophosphate (Bt2cAMP). At the termination of the experiment, microsomes were isolated from these livers. In agreement with data reported previously, Bt2cAMP decreased output of triacylglycerol, but stimulated ketogenesis and output of glucose; uptake of free fatty acid was unaffected by the nucleotide. Perfusion with Bt2AMP decreased the biosynthesis of triacylglycerol, diacylglycerol, and phosphatidate from sn-[U-14C]glycerol-3-phosphate by microsomes isolated from these livers. Perfusion with Bt2cAMP also decreased incorporation of sn-glycerol-3-phosphate into phosphatidate by microsomes isolated from the livers, when the microsomes were incubated with NaF to inhibit phosphatidate phosphohydrolase, and when fatty acid, coenzyme A and ATP were replaced by the acyl coenzyme A derivative; the formation of phosphatidate under these conditions was used as an estimate of the activity of sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15). However, the activities of microsomal phosphatidate phosphohydrolase (EC 3.1.3.4) and diacylglycerol acyltransferase (EC 2.3.1.20), measured with microsomal bound substrate, were increased by Bt2cAMP. These data have been interpreted to mean that Bt2cAMP inhibits hepatic microsomal synthesis of triacylglycerol at a step prior to the formation of phosphatidate, presumably at the glycerophosphate acyltransferase (EC 2.3.1.15) step(s).  相似文献   

9.
  • 1.1. Suncus murinus was injected dibutyryl adenosine 3′,5′-cyclic monophosphate (Bt2cAMP) and assayed serine-glyoxylate aminotransferase (EC 2.6.1.45) and serine dehydratase (EC 4.2.1.13).
  • 2.2. Serine dehydratase was induced 4-fold by Bt2cAMP. The Km values of the induced enzyme for l-serine and pyridoxal 5′-phosphate was 57 mM and 3.0 μM, respectively. The enzyme had a pH optimum at pH 10.0. These kinetic properties and pH optimum were same as those of the enzyme from the control. Both the holoenzyme and the apoenzyme increased to the same extent by Bt2cAMP.
  • 3.3. Serine-glyoxyate aminotransferase activity was decreased slightly by the Bt2cAMP injection. The holoenzyme activity was increased, but the apoenzyme decreased. Km values for l-serine and glyoxylate of this enzyme were 6mM and 0.2 mM, respectively, without change by Bt2cAMP.
  相似文献   

10.
N2, O2-di-butyryl guanosine 3′:5′ monophosphate (Bt2 cGMP), a known competitive and selective inhibitor of the effect of cholecystokinin on the pancreatic acinar cells invitro was tested for its effect on the guinea pig gallbladder invitro. Bt2 cGMP inhibited competitively the contractile effect of cholecystokinin octapeptide, and also inhibited the contraction induced by sulfated gastrin-17. Bt2 cGMP failed to inhibit the contraction induced by bombesin, acetylcholine or histamine. The 8-bromo derivative of cGMP and the dibutyryl derivative of cAMP did not affect contraction stimulated by cholecystokinin octapeptide. Since it is specific for gastrincholecystokinin peptides, and not restricted to the pancreas, Bt2 cGMP could be used to recognize the action of these peptides.  相似文献   

11.
12.
13.
G-protein coupled Angiotensin II receptors (AT1A), mediate cellular responses through multiple signal transduction pathways. In AT1A receptor-transfected CHO-K1 cells (T3CHO/AT1A), angiotensin II (AII) stimulated a dose-dependent (EC50=3.3 nM) increase in cAMP accumulation, which was inhibited by the selective AT1, nonpeptide receptor antagonist EXP3174. Activation of protein kinase C, or increasing intracellular Ca2+ with ATP, the calcium ionophore A23187 or ionomycin failed to stimulate cAMP accumulation. Thus, AII-induced cAMP accumulation was not secondary to activation of a protein kinase C- or Ca2+/calmodulin-dependent pathway. Since cAMP has an established role in cellular growth responses, we investigated the effect of the AII-mediated increase in cAMP on cell number and [3H]thymidine incorporation in T3CHOA/AT1A cells. AII (1 M) significantly inhibited cell number (51% at 96 h) and [3H]thymidine incorporation (68% at 24 h) compared to vehicle controls. These effects were blocked by EXP3174, confirming that these responses were mediated through the AT1 receptor. Forskolin (10 M) and the cAMP analog dibutyryl-cAMP (1 mM) also inhibited [3H]thymidine incorporation by 55 and 25% respectively. We extended our investigation on the effect of AII-stimulated increases in cAMP, to determine the role for established growth related signaling events, i.e., mitogen-activated protein kinase activity and tyrosine phosphorylation of cellular proteins. AII-stimulated mitogen-activated protein kinase activity and phosphorylation of the 42 and 44 kD forms. These events were unaffected by forskolin stimulated increases in cAMP, thus the AII-stimulated mitogen-activated protein kinase activity was independent of cAMP in these cells. AII also stimulated tyrosine phosphorylation of a number of cellular proteins in T3CHO/AT1A cells, in particular a 127 kD protein. The phosphorylation of the 127 kD protein was transient, reaching a maximum at 1 min, and returning to basal levels within 10 min. The dephosphorylation of this protein was blocked by a selective inhibitor of cAMP dependent protein kinase A, H89-dihydrochloride and preexposure to forskolin prevented the AII-induced transient tyrosine phosphorylation of the 127 kD protein. These data suggest that cAMP, and therefore protein kinase A can contribute to AII-mediated growth inhibition by stimulating the dephosphorylation of substrates that are tyrosine phosphorylated in response to AII.  相似文献   

14.
Abstract

The human ileum neurokinin NK2 receptor has been stably expressed in Chinese hamster ovary (CHO) cells using the dihydrofolate reductase (DHFR) expression system. Amplified cell populations expressing approximately 7×105 NK2 receptors/cell were selected in the presence of the DHFR inhibitor methotrexate. Cross-linking of [125I]NKA to NK2 receptor transfected cells revealed a specifically labeled protein of apparent molecular weight 64 kDa by SDS-polyacrylamide gel electrophoresis. This protein was deglycosylated by the enzymes N-glycosidase F and endoglycosydase F to a protein of apparent molecular weight of 39 kDa. The NK2 receptor was solubilized in an active form from CHO cell membranes using the zwitterionic detergent CHAPS. This method represents a valuable approach for the production of significant amounts of NK2 receptor protein from mammalian cells.  相似文献   

15.
The various protein components of a reversible phosphorylating system regulating smooth muscle actomyosin Mg-ATPase activity have been purified. The enzyme catalyzing phosphorylation of smooth muscle myosin, myosin-kinase, requires Ca2+ and the Ca2+-binding protein calmodulin for activity and binds calmodulin in a ratio of 1 mol calmodulin to 1 mol of myosin kinase. Myosin kinase can be phosphorylated by the catalytic subunit of cyclic AMP (cAMP)-dependent protein kinase, and phosphorylation of myosin kinase that does not have calmodulin bound results in a marked decrease in the affinity of this enzyme for Ca2+-calmodulin. This effect is reversed when myosin kinase is dephosphorylated by a phosphatase purified from smooth muscle. When the various components of the smooth muscle myosin phosphorylating-dephosphorylating system are reconstituted, a positive correlation is found between the state of myosin phosphorylation and the actin-activated Mg-ATPase activity of myosin. Unphosphorylated and dephosphorylated myosin cannot be activated by actin, but the phosphorylated and rephosphorylated myosin can be activated by actin. The same relationship between phosphorylation and enzymatic activity was found for a chymotryptic peptide of myosin, smooth muscle heavy meromyosin. The findings reported here suggest one mechanism by which Ca2+ and calmodulin may act to regulate smooth muscle contraction and how cAMP may modulate smooth muscle contractile activity.  相似文献   

16.
To determine what effect maturation promoting factor (MPF, p34 cdc2 kinase/cyclin B) phosphorylation has on nucleolin’s distribution during mitotic nucleolar disassembly and reassembly, we altered Chinese hamster ovary (CHO) nucleolin (the N protein) such that it cannot be phosphorylated by p34 cdc2 . As expected, the transiently expressed epitope-tagged N protein showed no apparent defect in nucleolar localization in interphase CHO cells, even after hypotonic shock and recovery to quickly disassemble and then reassemble interphase nucleoli. In mitotic CHO cells, the N protein localized to the perichromosomal sheath and the cytoplasm, as is typical for nucleolin. Similar to epitope-tagged wild-type nucleolin, the N protein also maintained its association with persistent nucleoli characteristic of mitotic Chinese hamster lung (Dede) cells. In synchronized HeLa cells, the N protein again localized to the perichromosomal sheath and the cytoplasm as nucleoli disassembled during prophase. In HeLa cell telophase, the N protein localized normally to nucleolus-derived foci within the cytoplasm and prenucleolar bodies within reforming nuclei. The observations indicate that MPF phosphorylation is not essential for nucleolin’s localizations to the perichromosomal sheath and the cytoplasm during prophase and metaphase, and that functional MPF phosphorylation sites are not essential for nucleolin’s localizations during nucleologenesis. Accepted: 15 April 1999  相似文献   

17.
Macrovascular endothelial cells isolated from the human umbilical vein and microvessel endothelium from the newborn foreskin dermis differ in their requirements for optimal growth in vitor. In the presence of 5 x 10?4 M dibutyryl cyclic AMP (Bt2cAMP), human dermal microvessel endothelial cell proliferation rate increased to give a cell number of 203% of control values by day 10 in culture. The cells retained their characteristic endothelial cell morphology, reached confluence, and could be serially passaged. Cells grown in the absence of Bt2cAMP did not proliferate readily and grew in a disorganized pattern. The effect of Bt2cAMP on microvascular endothelial cell proliferation rate and morphology could be duplicated by cholera toxin (CT) used together with isobutyl methyl-xanthine (IMX). These agents were found to elevate intracellular levels of cyclic AMP in microvascular endothelium over 40-fold. Human umbilical vein cells in culture failed to respond to either Bt2cAMP or CT together with IMX. The growth-promoting effect of dibutyryl cyclic AMP (Bt2cAMP) on human foreskin dermal microvascular endothelium in vitro is in marked contrast to the lack of response of human umbilical vein cells. These results provide further evidence of differences in the mechanisms that regulate macro and microvessel endothelial cell proliferation in vitro.  相似文献   

18.
Actin-myosin interaction in aortic actomyosin reportedly requires phosphorylation of the 20,000 dalton myosin light chains. A spontaneously active phosphatase which dephosphorylates phosphorylase a and isolated phosphorylated cardiac myosin light chains was extracted from bovine aortic smooth muscle. This enzyme, when added to aortic native actomyosin (a) significantly suppressed phosphorylation of the light chains of the native hexameric smooth muscle myosin, (b) accelerated the rate and increased the magnitude of myosin light chain dephosphorylation in actomyosin that had been prephosphorylated, and (c) markedly attenuated the rate of actin-myosin interaction. These results support the hypothesis that myosin phosphorylation and subsequent actin-myosin interactions (contractility) in vascular smooth muscle may be modulated by spontaneously active aortic phosphatase.  相似文献   

19.
Myosin was purified from ovine uterine smooth muscle. The 20,000 dalton myosin light chain was phosphorylated to varying degrees by an endogenous Ca2+ dependent kinase. The kinase and endogenous phosphatases were then removed via column chromatography. In the absence of actin neither the size of the initial phosphate burst nor the steady state Mg2+-dependent ATPase activity were affected by phosphorylation. However, phosphorylation was required for actin to increase the Mg2+-dependent ATPase activity and for the myosin to superprecipitate with actin. Ca2+ did not affect the Mg2+-dependent ATPase activity in the presence or absence of action or the rate or extent of superprecipitation with actin once phosphorylation was obtained. These data indicate that: 1) phosphorylation of the 20,000 dalton myosin light chain controls the uterine smooth muscle actomyosin interaction, 2) in the absence of actin, phosphorylation does not affect either the ATPase of myosin or the size of the initial burst of phosphate and, 3) Ca2+ is important in controlling the light chain kinase but not the actomyosin interaction.  相似文献   

20.
This study examines the effect of mutation of the low-density lipoprotein receptor (LDLR) on cholesterol metabolism, and especially lipoprotein-derived cholesteryl ester uptake, in murine ovarian granulosa cells. Although the tests were conducted on cells prepared by two different procedures, the results are similar. Deletion of LDLR function did not noticeably affect key enzymes of the steroidogenic pathway or affect progestin production and secretion in granulosa cells. No change was found in expression of LDL-related protein (LRP). These data suggested that cholesterol turnover in cells from the knockout animals is within normal limits and that the cells are not stressed to acquire more cholesterol. Both biochemical and morphological data indicate that unstimulated granulosa cells from LDLR−/− mice are nonetheless programmed to take in double the amount of lipoprotein-derived cholesteryl ester (via the selective cholesteryl ester uptake pathway) and to process (hydrolyze, re-esterify, or utilize) more than twofold the cholesteryl ester processed by cells from wildtype (LDLR+/+) animals. Bt2cAMP stimulation of the murine granulosa cells increases the mass of cholesteryl ester taken up by the selective pathway by an additional 38%. To determine to what extent this increase is related to high-density lipoprotein (HDL) scavenger receptor protein (SR-BI) or caveolin function, Western blots and immunohistochemical studies were performed under a variety of conditions. SR-BI levels are found to be low in unstimulated cells of both LDLR+/+ and LDLR−/− animals, but highly expressed (∼20-fold increase over basal levels) in stimulated (Bt2cAMP) cells of both animal models. Thus, the functional relationship between selective cholesteryl ester uptake and SR-BI receptor protein is not as tight as in previously reported studies, suggesting a requirement for other tissue factors. Caveolin expression did not change under any of the conditions tested and appears not to be functionally involved in this process. J. Cell. Physiol. 180:190–202, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号