首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toxic shock syndrome toxin-1 (TSST-1), an extra-cellular 22 kDa single chain protein produced by most Staphylococcus aureus strains isolated from patients with toxic shock syndrome (TSS), induces modifications of blood cell values similar to those observed during TSS. We therefore analyzed the effects of TSST-1 on the proliferation and differentiation of murine granulocyte-macrophage progenitor cells (CFU-culture) and the eventual role of endotoxin in this response. TSST-1 had no direct effect on the proliferation of CFU-culture and was unable to influence the CSF-induced proliferation and differentiation of these progenitors. In contrast, TSST-1 was a potent inducer in spleen cell cultures of a factor with an ability to induce both colony formation by bone marrow cells and proliferation of an IL-3-dependent cell line. Nanogram amounts of TSST-1 were able to induce the release of CSF activity in spleen cell cultures from both normal and LPS-hyporesponsive mice. Cells from C3H/HeJ mice were as responsive as cells from C3H/He Pas mice. Furthermore, in spleen cell cultures from normal mice, TSST-1 and LPS did not act synergistically to induce CSF activity. Nanogram amounts of TSST-1 were also able to induce CSF activity in vivo but failed to induce IL-3 activity in the serum and organ-conditioned media from TSST-1-treated mice.  相似文献   

2.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

3.
LPS-binding protein (LBP) binds with high affinity (Kd approximately equal to 10(-9) M) to lipid A of LPS isolated from rough (R)- or smooth (S)-form Gram-negative bacteria as well as to lipid A partial structures such as precursor IVA. To define the role of LBP in regulating responses to LPS we have examined TNF release in rabbit peritoneal exudate macrophages (M phi) stimulated with LPS or with complete or partial lipid A preparations in the presence or absence of LBP. In the presence of LBP, M phi showed increased sensitivity to S- and R-form LPS as well as synthetic lipid A. Compared with LPS or lipid A, up to 1000-fold greater concentrations of partial lipid A structures were required to induce TNF production. However, consistent with our previous observations that these structures bind to LBP, TNF production was increased in the presence of LBP. In contrast, LBP did not enhance or inhibit TNF production produced by heat-killed Staphylococcus aureus, peptidoglycan isolated from S. aureus cell walls, or PMA. Potentiated M phi responsiveness to LPS was observed with as little as 1 ng LBP/ml. Heat-denatured LBP (which no longer binds LPS), BPI (an homologous LPS-binding protein isolated from neutrophils), or other serum proteins were without effect. LBP-treated M phi also showed a more rapid induction of cytokine mRNA (TNF and IL-1 beta), higher steady-state mRNA levels and increased TNF mRNA stability. These data provide additional evidence that LBP is part of a highly specific recognition system controlling M phi responses to LPS. The effects of LBP are lipid A dependent and importantly, extend to LPS preparations isolated from bacteria of R- and S-form phenotype.  相似文献   

4.
Colony-stimulating factors (CSFs) produced by two simian virus 40(SV40) transformed macrophage cell lines (BAM1 and BAM3), and three hybrids (HM3-11, HM3-12, and HM3-14) derived from fusion between BAM3 and a Chinese hamster cell line (hs222-16) were examined. HM3-11 and HM3-14 produce two molecular species of CSF, which are not found in the conditioned media from cultures of BAM1 and BAM3 or lipopolysaccharide (LPS), phorbolmyristate-acetate (PMA), and zymosan-stimulated BAM3. HM3-12, which is classified into another group in terms of CSF secretion, does not produce these two CSFs. On the basis of various criteria, one of these CSF species (peak 1-CSF) was characterized as a macrophage-colony-stimulating factor (M-CSF). The other CSF (peak 2-CSF) induced a group of bone marrow cells in granulocytes and macrophages as well as growth of a mast cell line, IC2. This CSF has an apparent molecular weight of 18,000, estimated by SDS-polyacrylamide gel electrophoresis. Unlike interleukin 3 (IL3) from WEHI-3 cells, the growth factor activity of peak 2-CSF binds to DEAE-Sephacel. Thus, peak 2-CSF is similar to a granulocyte-macrophage colony-stimulating factor (GM-CSF) rather than to IL3. The anti L cell CSF serum does not inhibit the CSF activity in Chinese hamster fibroblast conditioned medium, and the IC2 cells do not respond to Chinese hamster lung conditioned medium (CHLCM), suggesting that peak 1- and peak 2-CSF are of mouse origin.  相似文献   

5.
Microparticles (MP) shed by platelets (PLT) during storage have procoagulant activities, but little is known about their properties to modify inflammation or immunity. In this study, we studied the capacity of MP present in PLT concentrates to alter the function of macrophages and dendritic cells (DC). The size of the purified MP was between 100 and 1000 nm, and they expressed phosphatidylserine; surface proteins of PLT (CD61, CD36, CD47), including complement inhibitors (CD55, CD59), but not CD63; and proteins acquired from plasma (C1q, C3 fragments, factor H). These characteristics suggest that the MP shed by PLT are formed by budding from the cell surface, corresponding to ectosomes. The purified PLT ectosomes (PLT-Ect) reduced the release of TNF-α and IL-10 by macrophages activated with LPS or zymosan A. In addition, PLT-Ect induced the immediate release of TGF-β from macrophages, a release that was not modified by LPS or zymosan A. Macrophages had a reduced TNF-α release even 24 h after their exposure to PLT-Ect, suggesting that PLT-Ect induced a modification of the differentiation of macrophages. Similarly, the conventional 6-d differentiation of monocytes to immature DC by IL-4 and GM-CSF was modified by the presence of PLT-Ect during the first 2 d. Immature DC expressed less HLA-DP DQ DR and CD80 and lost part of their phagocytic activity, and their LPS-induced maturation was downmodulated when exposed to PLT-Ect. These data indicate that PLT-Ect shed by stored PLT have intrinsic properties that modify macrophage and DC differentiation toward less reactive states.  相似文献   

6.
7.
Osteoclasts are bone‐resorbing multinucleated cells differentiated from monocyte/macrophage lineage precursors. A novel osteoclast precursor cell line, 4B12 was established from Mac‐1+c‐Fms+RANK+ cells from calvaria of 14‐day‐old mouse embryos using immunofluorescence and cell‐sorting methods. Like M‐CSF‐dependent bone marrow macrophages (M‐BMMs), M‐CSF is required for 4B12 cells to differentiate into TRAP‐positive multinucleated cells [TRAP(+) MNCs] in the presence of RANKL. Bone‐resorbing osteoclasts differentiated from 4B12 cells on dentine slices possess both a clear zone and ruffled borders and express osteoclast‐specific genes. Bone‐resorbing activity, but not TRAP, was enhanced in the presence of IL‐1α. The number of TRAP(+) MNCs and the number of pits formed from 4B12 cells on dentine slices was fourfold higher than that from M‐BMMs. 4B12 cells were identified as macrophages with Mac‐1 and F4/80, yet lost these markers upon differentiation into osteoclasts as determined by confocal laser scanning microscopy. The 4B12 cells do not have the potential to differentiate into dendritic cells indicating commitment to the osteoclast lineage. 4B12 cells are readily transfectable with siRNA transfection before and after differentiation. These data show that 4B12 cells faithfully replicate the properties of primary cells and are a useful and powerful model for analyzing the molecular and cellular regulatory mechanisms of osteoclastogenesis and osteoclast function. J. Cell. Physiol. 221: 40–53, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

8.
9.
Purified mouse L cell colony-stimulating factor (CSF) and purified iron-saturated human lactoferrin (LF) were assessed for their effects on release of acidic isoferritin-inhibitory activity (AIFIA) from resident peritoneal and spleen macrophages of B6D2F1 mice. Constitutive release of AIFIA was dependent on the number of macrophages conditioning the culture medium. Detection of release of AIFIA required at least 10(4) macrophages/ml, and increased release was noted with increased concentrations of cells. This release was enhanced by CSF and was induced by CSF from concentrations of 10(3) macrophages/ml, from which constitutive release of AIFIA was not detected. Increased concentrations of CSF induced increased release of AIFIA. The inducing effect was removed by pretreating CSF with rabbit anti-L cell CSF serum. LF suppressed the constitutive as well as the CSF-induced release of AIFIA, but results were dependent on the relative concentrations of LF and CSF used. The suppressive effects of LF were removed by pretreating LF with goat anti-human LF. Constitutive, but not CSF-induced, release of AIFIA could be ablated by removal of Ia antigen-positive macrophages with low concentrations of monoclonal anti-Ia plus complement. Treating macrophages with higher concentrations of anti-Ia in the absence of complement blocked the LF suppression of constitutive AIFIA release but not the CSF-induction of AIFIA release. Release of AIFIA from mouse macrophages can be modulated by CSF and LF. This modulation may be of significance for the regulation of myelopoiesis.  相似文献   

10.
The macrophage tumor cell line J774.1 replaced the function of normal macrophages in the induction of polyclonal killer T cells with 2-mercaptoethanol. J774.1 does not normally release soluble factor(s) which we have shown to be responsible for the differentiation of T cells to killer T cells. However, stimulation of J774.1 with LPS induced soluble factor(s) for T cell activation. An optimum concentration of LPS for the production of soluble factor(s) was 1 to 10 microgram/ml, which completely inhibited growth of the tumor cells. The production of soluble factor(s) was observed within 6 hr after LPS stimulation and reached its maximum level at 24 hr. Incubation of the cell line with 8Br-cyclic AMP and theophylline induced soluble factor(s), suggesting that LPS stimulation induced an increase in intracellular cyclic AMP which leads to the synthesis of soluble factor(s).  相似文献   

11.
Macrophages are intimately involved in the pathogenesis of atherosclerotic diseases. A key feature of this process is their uptake of various lipoproteins and subsequent transformation to foam cells. Since lipoprotein lipase (LPL) is believed to play a role in foam cell formation, we investigated if endogenously produced proteoglycans (PGs) affect the release of this enzyme from macrophages. The human leukaemic cell line THP-1 which differentiates into macrophages by treatment with phorbol ester (phorbol 12-myristate 13-acetate) served as a model. The differentiation of THP-1 macrophages promoted the release of PGs into the cell medium which caused the detachment of LPL activity from the cell surface, and prevented LPL re-uptake and inactivation. These PGs were mainly composed of chondroitin sulfate type and exerted a heparin-like effect on LPL release. LPL is known to increase the cell association of lipoproteins by the well known bridging function. Exogenous bovine LPL at a concentration of 1 microg/ml enhanced low density lipoprotein (LDL)-binding 10-fold. Endogenously produced PGs reduced LPL-mediated binding of LDL. It is proposed that the differentiation-dependent increase in the release of PGs interferes with binding of LPL and reduces lipoprotein-binding to macrophages.  相似文献   

12.
Rabbit macrophages (M?) and lymphocytes (Ly) incubated with three structurally dissimilar immunomodulators, lipopolysaccharide (bacterial endotoxin, LPS), polyinosinic: polycytidylic acid (poly-I:C) and muramyl dipeptide (MDP), were found to accumulate inositol phosphates (IPs) in a concentration- and time-dependent manner. The threshold concentration of LPS necessary for an increase in IPs in both cell types was less than 1 ng/ml and a maximum effect was observed between 1 and 10 micrograms/ml. The threshold concentrations for poly-I:C and MDP were between 0.1 and 1 microgram/ml for both cell types. Significant increases in the concentration of inositol phosphates occurred between 30 and 60 min after challenge of either cell type with any of the three agents studied. In addition, all three immunomodulators produced a greater accumulation of IPs in macrophages than in mixed lymphocytes and after 2 h appeared to approach a maximum in macrophages, whereas the IPs level in lymphocytes appeared to be still rising after 2 h. In M? and Ly the IPs level was increased within 10 min of incubation in the presence of either PGE2 or medium previously obtained from cells incubated with LPS. In addition, anisomycin (a protein synthesis inhibitor) and ketoprofen (a cyclo-oxygenase inhibitor) inhibited the LPS-stimulated increase of IPs accumulation in both cell types. These two observations suggest that the LPS-stimulated increase in IPs in macrophages and lymphocytes is mediated by a protein intermediate and possibly a prostanoid.  相似文献   

13.
Addition of bacterial lipopolysaccharide (LPS), a B cell mitogen, to mouse spleen cultures strongly stimulated production of colony-stimulating factor (CSF), the humoral regulator of granulopoiesis, and macrophage formation in vitro. Secretion of CSF from LPS-stimulated spleen cells coincided with cellualr DNA synthesis and cell transformation and both activities could be attributed to the lipid A moiety of the molecule. Different experimental approaches were used to study the relationship of CSF release and lymphocyte activation in response to LPS: a) modification of LPS with polymyxin B, an antibiotic bactericidal for most Gram-negative bacteria, caused a marked reduction in mitogenic activity, although the ability to induce CSF was not significantly altered; b)spleen cells from CBA/N mice, a mutant strain with an x-linked genetic defect in immunologic and mitogenic responses to polyclonal activators including LPS, showed diminished mitogeinc responses; however, high levels of CSF were produced; c) mitotic and DNA inhibitors (colchicine and cytosine arabinoside) did not affect CSF release although they completely inhibited mitogenicity. Thus, the spleen cell population participating in the process of LPS-induced CSF generation is probably a nondividing, terminally differentiated one without need for DNA synthesis. In addition, it was also shown that active RNA and protein synthesis are needed in this process.  相似文献   

14.
Macrophages develop into specialized cell types with special functional properties, depending on locally produced stimuli. Adipose tissue macrophages present particular characteristics, such as the M2 cell phenotype, and produce cytokines and chemokines usually produced by M1 cells. Our aim was to study the role of leptin, which is an adipokine produced and released by adipocytes, in the induction of these characteristics in macrophages found in the adipose tissue. Human CD14+ cells were obtained and maintained in culture with IFN-γ (classical M1 phenotype), IL-4 (alternative M2 phenotype) or leptin for 5 d. Surface marker expression was then analyzed by cytometry. In addition, the release of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, IL-10, IL-1ra, MCP-1, MIP-1α, and RANTES was quantified by ELISA after an LPS stimulus, in the culture supernatant. Macrophages exposed to leptin in culture expressed surface markers that were more similar to the M2 phenotype, but they were able to produce TNF-α, IL-6, IL-1β, IL-1ra, IL-10, MCP-1, and MIP-1α, as observed for M1 cells. Results suggest that leptin strongly contributes to the phenotype observed in macrophages found in adipose tissue.  相似文献   

15.
Monocytes attracted by tumor-induced chronic inflammation differentiate to APCs, the type of which depends on cues in the local tumor milieu. In this work, we studied the influence of human cervical cancer cells on monocyte differentiation and showed that the majority of cancer cells either hampered monocyte to dendritic cell differentiation or skewed their differentiation toward M2-like macrophages. Blocking studies revealed that M2 differentiation was caused by tumor-produced PGE(2) and IL-6. TGF-β, IL-10, VEGF, and macrophage colony-stimulating factor did not play a role. Notably, these CD14(+)CD163(+) M2 macrophages were also detected in situ. Activation of cancer cell-induced M2-like macrophages by several TLR-agonists revealed that compared with dendritic cells, these M2 macrophages displayed a tolerogenic phenotype reflected by a lower expression of costimulatory molecules, an altered balance in IL-12p70 and IL-10 production, and a poor capacity to stimulate T cell proliferation and IFN-γ production. Notably, upon cognate interaction with Th1 cells, these tumor-induced M2 macrophages could be switched to activated M1-like macrophages that expressed high levels of costimulatory molecules, produced high amounts of IL-12 and low amounts of IL-10, and acquired the lymphoid homing marker CCR7. The effects of the interaction between M2 macrophages and Th1 cells could partially be mimicked by activation of these APCs via CD40 in the presence of IFN-γ. Our data on the presence, induction, and plasticity of tumor-induced tolerogenic APCs in cervical cancer suggest that tumor-infiltrated Th1 cells can stimulate a tumor-rejecting environment by switching M2 macrophages to classical proinflammatory M1 macrophages.  相似文献   

16.

Background

Statins effectively lower blood cholesterol and the risk of cardiovascular death. Immunomodulatory actions, independent of their lipid-lowering effect, have also been ascribed to these compounds. Since macrophages participate in several vascular pathologies, we examined the effect of statin treatment on the survival and differentiation of primary human monocytes.

Methods

Peripheral blood mononuclear cells (PBMCs) from healthy individuals were cultured in the presence or absence of mevastatin. Apoptosis was monitored by annexin V / PI staining and flow cytometry. In parallel experiments, cultures were stimulated with LPS in the presence or absence of mevastatin and the release of IL-1β and IL-1Ra was measured by ELISA.

Results

Among PBMCs, mevastatin-treated monocytes were particularly susceptible to apoptosis, which occurred at doses >1 microM and was already maximal at 5 microM. However, even at the highest mevastatin dose used (10 microM), apoptosis occurred only after 24 h of culture, possibly reflecting a requirement for cell commitment to differentiation. After 72 h of treatment the vast majority (>50%) of monocytes were undergoing apoptosis. Stimulation with LPS revealed that mevastatin-treated monocytes retained the high IL-1β output characteristic of undifferentiated cells; conversely, IL-1Ra release was inhibited. Concurrent treatment with mevalonolactone prevented the induction of apoptosis and suppressed both IL-1β and IL-1Ra release in response to LPS, suggesting a rate-limiting role for HMG-CoA reductase in monocyte differentiation.

Conclusions

Our findings indicate that statins arrest the functional differentiation of monocytes into macrophages and steer these cells into apoptosis, suggesting a novel mechanism for the vasculoprotective properties of HMG-CoA reductase inhibitors.  相似文献   

17.
The susceptibility of four different human cell lines (HUT 102, THP-1, MOLT-4, and HL-60) to infection by human CMV (HCMV) was studied. Only HUT 102 was susceptible and only immediate-early gene products were produced. However, THP-1, a monocytic cell line, could be infected by HCMV with a full cycle of replication after treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), which produced differentiation of the cell line into cells with characteristics of mature macrophages. Late (structural) Ag were demonstrated, as were infectious virions as detected by electron microscopy and infectious center assay. HL-60, a promyelocytic cell line, was not susceptible to HCMV infection after treatment with TPA despite differentiation into adherent cells with properties of macrophages, suggesting that cellular lineage was important. Treatment with TPA after infection resulted in a greatly reduced frequency of infected cells, suggesting that pretreatment was essential. Furthermore, continued presence of TPA was unnecessary after differentiation was induced. This study establishes the precedent of productive HCMV infection in human monocytic cells. The potential mechanism and relevance of enhanced replication induced by TPA are discussed.  相似文献   

18.
A study has been made of the activity of interleukin 1 (IL-1) and prostaglandins (PGs) in the culture supernatants from unstimulated and lipopolysaccharide (LPS)-stimulated mycobacteria-induced granuloma cells. Both epithelioid cells from bacillus Calmette-Guerin (BCG)-induced granulomas and macrophages from Mycobacterium leprae-induced granulomas, separated on a fluorescence-activated cell sorter using monoclonal antibody specific to guinea pig macrophages, spontaneously secreted low levels of IL-1 (assayed by thymocyte comitogenic and fibroblast mitogenic activities) into culture supernatants. However, culture supernatants from LPS-stimulated epithelioid cells showed significantly higher IL-1 activity than those from unstimulated cells. In contrast, LPS stimulation of M. leprae granuloma macrophages failed to enhance IL-1 production. Nevertheless, IL-1 activity in the culture supernatants from stimulated mycobacterial granuloma cells of both types was much lower than that from LPS-stimulated peritoneal exudate macrophage culture supernatants. There was no detectable amount of prostaglandin E2 (PGE2) in the culture supernatants from both unstimulated and LPS-stimulated BCG- and M. leprae-induced granuloma cells in comparison to much higher levels of PGE2 produced by unstimulated (0.28-6.2 ng/ml) or LPS-stimulated (greater than 15 ng/ml) peritoneal exudate macrophages. However, BCG granuloma cells either secreted prostaglandin F2 alpha (PGF2 alpha) spontaneously or produced comparable levels of PGF2 alpha to those from peritoneal exudate macrophages on stimulation, while M. leprae granuloma macrophages produced much lower levels of PGF2 alpha.  相似文献   

19.
Summary We had previously established a murine bone marrow-derived cell line, designated JBM1.1, which displayed properties of normal macrophages, including the ability to perform macrophage-mediated cytolysis. It was also found that these cells could be induced by lipopolysaccharide (LPS) to produce reproducibly high levels of a cytolytic factor (CF) resembling tumor necrosis factor (TNF). This cell line was therefore selected for further studies on macrophage-mediated tumor cell lysis and CF production. Moreover, the CF production during incubation with LPS was higher in the absence of serum than in its presence, with a maximum at days 2–3 following the addition of LPS. A factor inhibitory to CF production (CIF) was detected in our laboratory in the supernatant of embryonic fibroblast cultures. We established the experimental conditions required for the optimal production and suppressive effect of CIF. High levels of CIF activity were obtained under conditions that promote fibroblast proliferation. Addition of embryonic fibroblast culture supernatant to the macrophages shortly before LPS suppressed both LPS-induced CF production and tumoricidal activity. CIF did not affect macrophage protein synthesis in the presence or absence of LPS. However, LPS-induced interleukin 1 release was partially (55%) suppressed by embryonic fibroblast culture supernatant. Our results show that CIF does not exert a general inactivating effect on the macrophages, although it may possibly affect other functions in addition to CF production and tumor cell lysis. The strong inhibition of both the latter properties further indicates that TNF-like CF is an important mediator in macrophage-mediated tumor cell lysis.  相似文献   

20.
It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFα, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号