首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of amino acid transport in L6 muscle cells by amino acid deprivation was investigated. Proline uptake was Na+-dependent, saturable and concentrative, and was predominantly through system A. Proline uptake was inhibited by alanine, α-amino isobutyric acid (AIB), and by α-methylamino isobutyric acid, but not by lysine or valine. At 25°C, Km of proline uptake was 0.5 mM. Amino acid-deprivation resulted in a progressive increase in the rate of proline uptake, reaching up to 6-fold stimulation after 6 hours. The basal and stimulated transport were equally Na+-dependent, and both were inhibited by competition with the same amino acids. Kinetic analysis showed that Km decreased by a factor of 2.4 and Vmax increased 1.9-fold in deprived cells. Amino acid-deprivation did not stimulate amino acid uptake through systems other than system A. This suggests that the higher Km in proline-supplemented cells is not due to release of intracellular amino acids into unstirred layers surrounding the cells. The presence of amino acids which are substrates of system A (including AIB) during proline-deprivation, prevented stimulation of proline uptake, whereas those transported by systems Ly+ or L exclusively were ineffective. The stimulation of the transport-rate in deprived cells could be reversed by subsequent exposure to proline or other substrates of system A. L6 cells, deprived of proline for 6 hours, retained the stimulation of transport after detachment from the monolayers with trypsin. Uptake rates were comparable in suspended and attached cells in monolayer culture. Thus, amino acid-depreivation of L6 cells results in an adaptive increase in proline uptake, which is not due to unstirred layers but appears to be mediated by other mechanisms of selective transport regulation.  相似文献   

2.
3.
Isaacks  R. E.  Bender  A. S.  Kim  C. Y.  Norenberg  M. D. 《Neurochemical research》1997,22(12):1461-1469
myo-Inositol uptake measured in primary astrocyte cultures was saturable in the presence of Na+ with a Km of 13–18 M and a Vmax of 9.4 nmoles/mg protein/hour in myo-inositol-fed cells, indicating a high affinity transport system. In myo-inositol-deprived cells, Km was about 53 M with a Vmax of 13.2 nmoles/mg protein/hour. Decreasing osmolality decreased the Vmax to about 1.9 nmoles/mg protein/hour whereas increasing osmolality increased Vmax about 5-fold, while Kms were essentially unchanged in myo-inositol fed cells. In cells deprived of myo-inositol, Vmax decreased in hypotonic medium and increased in hypertonic medium almost 10-fold, but with more than a doubling of the Km regardless of the osmolality. Glucose (25 mM) inhibited myo-inositol uptake 51% whereas the other hexoses used inhibited uptake much less. Our findings indicate that myo-inositol uptake in astrocytes occurs through an efficient carrier-mediated Na+-dependent co-transport system that is different from that of glucose and its kinetic properties are affected by myo-inositol availability and osmotic stress.  相似文献   

4.
We have developed a method for the isolation of transport mutants with increases in velocity of transport through the A and ASC systems and through a newly discovered P system utilizing the amino acid antagonism between A system amino acids and proline in CHO-K1 pro- cells. Mutants alar2 and alar3, isolated in a single-step procedure, resistant to 25 mM alanine in MEM-10 plus 0.05 mM proline are pro-, stable, cross resistant to alpha-(methylamino)isobutyric acid (MeAIB) and show an approximately twofold increase in the initial velocity of proline uptake. Ethyl methane sulfonate (EMS) increases the frequency of pro- alar clones in the population by at least 50 times the spontaneous frequency. The increased velocity of proline transport by alar2 and alar3 can be attributable to the 1.5 to 3 times increase in velocity of transport of proline through systems A, ASC, and P. The Vmax for proline transport through the A system has increased two times for alar2 while the Km and Vmax for alar3 has increased by 1.4 and 2.3 times that of CHO-K1. There is a corresponding increase in Vmax of proline transport by alar2 through the P system. The P system is defined operationally as that portion of the Na+-dependent velocity that remains when the A, ASC, and glutamine-inhibitable fraction are eliminated. The system is concentrative. Proline appears to be the preferred substrate. Li+ cannot be substituted for Na+. The system is moderately dependent upon pH. It obeys Michaelis-Menten kinetics and is not derepressible by starvation. There is no evidence for an N system in CHO-K1.  相似文献   

5.
L-Proline enhanced the growth of Staphylococcus aureus in high-osmotic-strength medium, i.e., it acted as an osmoprotectant. Study of the kinetics of L-[14C]proline uptake by S. aureus NCTC 8325 revealed high-affinity (Km = 1.7 microM; maximum rate of transport [Vmax] = 1.1 nmol/min/mg [dry weight]) and low-affinity (Km = 132 microM; Vmax = 22 nmol/min/mg [dry weight]) transport systems. Both systems were present in a proline prototrophic variant grown in the absence of proline, although the Vmax of the high-affinity system was three to five times higher than that of the high-affinity system in strain 8325. Both systems were dependent on Na+ for activity, and the high-affinity system was stimulated by lower concentrations of Na+ more than the low-affinity system. The proline transport activity of the low-affinity system was stimulated by increased osmotic strength. The high-affinity system was highly specific for L-proline, whereas the low-affinity system showed a broader substrate specificity. Glycine betaine did not compete with proline for uptake through either system. Inhibitor studies confirmed that proline uptake occurred via Na(+)-dependent systems and suggested the involvement of the proton motive force in creating an Na+ gradient. Hyperosmotic stress (upshock) of growing cultures led to a rapid and large uptake of L-[14C]proline that was not dependent on new protein synthesis. It is suggested that the low-affinity system is involved in adjusting to increased environmental osmolarity and that the high-affinity system may be involved in scavenging low concentrations of proline.  相似文献   

6.
Inactivation of the galactose transport system in Saccharomyces cerevisiae   总被引:5,自引:0,他引:5  
C DeJuan  R Lagunas 《FEBS letters》1986,207(2):258-261
The galactose transport system of Saccharomyces cerevisiae consists of one component which shows a Km value of approx. 4mM in growing cells. A rapid and irreversible inactivation of this transport is detected on impairment of protein synthesis. This inactivation shows the following characteristics: (i) it is due to changes in the Km and Vmax of the transport system; (ii) it follows first-order kinetics; (iii) it is an energy-dependent process and is stimulated by the presence of an exogenous carbon source; (iv) fermentable sub-dependent process and is stimulated by the presence of an exogenous carbon source; (iv) fermentable substrates stimulate inactivation more efficiently than non-fermentable substrates.  相似文献   

7.
The effect of insulin on glucose entry has been studied in monolayer cultures of human diploid fibroblastic cells. Influence of insulin on total cell glucose incorporation was evaluated using [14C] glucose. Glucose incorporation was increased up to two-fold in the presence of insulin. Insulin action occurred within 30 minutes and could be observed with insulin concentrations as low as 10(-10) M (10 microU)ml). The action of insulin was enhanced by preincubation in glucose-free medium. After glucose starvation the cells converted glucose primarily to glycogen and nucleotides, and the stimulation by insulin was observed equally in both fractions. Influence of insulin on the kinetics of hexose transport was studied using 2-deoxyglucose and 3-0-methyl glucose. A large diffusion component was corrected using rho-chloromercuribenzoic acid or phloridzin. Km for facilitated diffusion averaged 1.9 mM for 2-deoxyglucose and 5.3 mM for 3-O-methyl glucose, and Vmax ranged from 10-24 nmoles/min/mg cell protein. Insulin resulted in a 150% increase in Vmax with no significant change in Km. The data suggest that human diploid fibroblasts can be a useful system for the study of insulin's glucoregulatory action.  相似文献   

8.
A study was made of the transport of a variety of amino acids by uninfected and Rous sarcoma virus-infected chicken embryo fibroblasts. Following a period of amino acid starvation, transformed, but not normal cells, showed increased levels of transport for alpha-aminoisobutyric acid, proline and alanine, three amino acids which are transported primarily by the A transport system. There was no starvation-induced increase in the transport of leucine, phenylalanine, lysine, or cycloleucine. In the absence of starvation, normal and transformed cells exhibited comparable rates of amino acid transport. Cycloheximide was able to block the increase in uptake. The enhanced uptake was characterized by an increase in Vmax for transport and little change in Km. The data demonstrate that an alteration in the regulation of the A amino acid transport system is an early event in malignant transformation by Rous sarcoma virus. However, since this alteration in made manifest only following a period of starvation, our findings suggest that increased amino acid uptake does not play a role in generating the other manifestations of the transformed state seen in cell culture.  相似文献   

9.
Corynebacterium glutamicum accumulates the compatible solutes proline, glycine betaine, and ectoine under conditions of high osmolality. Uptake of proline is mediated by both a high-affinity and a low-affinity secondary transport system. The low-affinity uptake system also accepts glycine betaine and ectoine as substrates. In the present study, the gene encoding the high-affinity proline uptake system PutP was isolated by heterologous complementation of Escherichia coli mutant strain WG389, which lacks the transport systems BetT, PutP, ProP, and ProU and is unable to synthesize proline and glycine betaine. This gene (putP) encodes a protein of 524 amino acids that shares identity with the proline transport systems PutP of E. coli, Staphylococcus aureus, Salmonella typhimurium, Haemophilus influenzae, and Klebsiella pneumoniae. Functional studies of PutP synthesized in E. coli mutant strain MKH13, which also lacks the transport systems for compatible solutes and is unable to synthesize glycine betaine, revealed that this carrier system is not regulated by the external osmolality on the level of activity. K m values of 7.6 mM for proline and 1.3 mM for sodium as cotransported ion were determined. Deletion of the putP gene allowed the functional characterization of another proline uptake system with low affinity. Received: 27 February 1997 / Accepted: 24 April 1997  相似文献   

10.
Creatine Transport in Cultured Cells of Rat and Mouse Brain   总被引:7,自引:3,他引:4  
Astroglia-rich cultures derived from brains of newborn rats or mice use a transport system for the uptake of creatine. The uptake system is saturable, Na+-dependent, and highly specific for creatine and Na+. Kinetic studies on rat cells revealed a Km value for creatine of 45 microM, a Vmax of 17 nmol x h-1 x (mg of protein)-1, and a Km value of 55 mM for Na+. The carrier is competitively inhibited by guanidinopropionate (Ki = 15 microM). No such transport system was found in neuron-rich primary cultures from embryonic rat brain. It is hypothesized that creatine transport is an astroglial rather than a neuronal function.  相似文献   

11.
Active transport of proline by Coxiella burnetii   总被引:10,自引:0,他引:10  
The obligate intracellular rickettsia, Coxiella burnetii, was shown to possess an energy dependent proline transport system which displayed a high degree of specificity and was highly dependent on pH. Transport was maximal at pH 3.0 to 4.5, a pH range approximately that of the host cell phagolysosome where the agent replicates. Transport was inhibited by the uncouplers carbonyl cyanide m-chlorophenylhydrazone and dinitrophenol, but not by sodium arsenite. In the presence of glutamate, a preferred energy source, proline uptake was enhanced more than two-fold. This enhancement of proline uptake was greatly decreased in the presence of sodium arsenite. The addition of glutamate decreased the apparent Km for proline transport from 45 microM to 15 microM, with the Vmax increasing from 3.6 pmol s-1 (mg dry wt)-1 to 4.8 pmol s-1 (mg dry wt)-1. Two proline analogues, furoic acid and azetidine-2-carboxylic acid, were effective inhibitors of proline transport. D-Proline, 4-hydroxyproline, glycine and proline amide inhibited transport minimally, while no inhibition was seen with succinate, pyruvate or glutamate.  相似文献   

12.
The effect of Cl? and other anions on (3H)-noradrenaline line (NA) transport by bisected rat heart atrial appendages invitro has been studied. It was found that NA active transport, at the plasma membrane level, shows an absolute dependency on Cl?, with a half-maximal activation of transport occurring at 6 mM Cl? and complete saturation at 50 mM. Cl? effects are due to changes in transport Km, while Vmax is not changed. Only one class of sites for Cl? seem to be present in the transport system. Br? can substitute for Cl? with 90% effectiveness, nitrate and iodide are less effective, while larger anions are very poor substitutes. In addition, heart atrial hemi-appendages have been characterized as a suitable preparation for studies of this type.  相似文献   

13.
The glutamine/amino acid transporter solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes has been previously identified as the ASCT2 transporter. The reconstituted transporter catalyses an antiport reaction in which external glutamine and Na+ are cotransported in exchange with internal glutamine (or other amino acids). The glutamine-Na+ cotransport occurred with a 1:1 stoichiometry. The concentration of Na+ did not influence the Km for glutamine and vice versa. Experimental data obtained by a bi-substrate analysis of the glutamine-Na+ cotransport, together with previous report on the glutamineex/glutaminein pseudo bi-reactant analysis, indicated that the transporter catalyses a three-substrate transport reaction with a random simultaneous mechanism. The presence of ATP in the internal compartment of the proteoliposomes led to an increase of the Vmax of the transport and to a decrease of the Km of the transporter for external Na+. The reconstituted glutamine/amino acid transporter was inhibited by glutamate; the inhibition was more pronounced at acidic pH. A kinetic analysis revealed that the inhibition was competitive with respect to glutamine. Glutamate was also transported in exchange with glutamine. The external Km of the transporter for glutamate (13.3 mM) was slightly higher than the internal one (8.3 mM). At acidic pH the external but not the internal Km decreased. According with the Km values, glutamate should be transported preferentially from inside to outside in exchange for external glutamine and Na+.  相似文献   

14.
Amino acid starvation causes an adaptive increase in the initial rate of transport of selected neutral amino acids in an established line of rat hepatoma cells in tissue culture. After a lag of 30 min, the initial rate of transport of alpha-aminoisobutyric acid (AIB) increases to a maximum after 4 to 6 h starvation of 2 to 3 times that seen in control cells. The increased rate of transport is accompanied by an increase in the Vmax and a modest decrease in the Km for this transport system, and is reversed by readdition of amino acids. The enhancement is specific for amino acids transported by the A or alanine-preferring system (AIB, glycine, proline); uptake of amino acids transported by the L or leucine-preferring system (threonine, phenylalanine, tyrosine, leucine) or the Ly+ system for dibasci amino acids (lysine) is decreased under these conditions. Amino acids which compete with AIB for transport also prevent the starvation-induced increase in AIB transport; amino acids which do not compete fail to prevent the enhancement. Paradoxically threonine, phenylalanine, tryptophan, and tyrosine, which do not compete with AIB for transport, block the enhancement of transport upon amino acid starvation. The starvation-induced enhancement of amino acid transport does not appear to be the result of a release from transinhibition. After 30 min of amino acid starvation, AIB transport is either unchanged or slightly decreased even though amino acid pools are already depleted. Furthermore, loading cells with high concentrations of a single amino acid following a period of amino acid starvation fails to prevent the enhancement of AIB transport, whereas incubation of the cells with the single amino acid for the entire duration of amino acid starvation prevents the enhancement; intracellular amino acid pools are similar under both conditions. The enhancement of amino acid transport requires concomitant RNA and protein synthesis, consistent with the view that the adaptive increase reflects an increased amount of a rate-limiting protein involved in the transport process. Dexamethasone, which dramatically inhibits AIB transport in cells incubated in amino acid-containing medium, both blocks the starvation-induced increase in AIB transport, and causes a time-dependent decrease in transport velocity in cells whose transport has previously been enhanced by starvation.  相似文献   

15.
In order to contribute to understanding of the response to metal stress, Ramalina farinacea (L.) Ach. was treated with different concentrations of chromium (VI) (5, 15, and 30 mM of K2CrO4) for 1, 3, and 24 h, and alterations in the photosystem II photosynthetic quantum yield, pigment content, integrity of chlorophyll, cell viability, and proline accumulation were investigated. Significant alterations of the photosynthetic quantum yield (F v/F m) ratio were observed in response to the increase in chromium concentration. The F v/F m ratio decreased in R. farinacea following 24-h treatment with 30 mM Cr6+ solution. In present study, in both control and other plant groups treated with 5 mM Cr6+, the Chl a/b ratio was approximately within the range of 2.0–3.5. However, this ratio significantly decreased for the samples treated with 15 (exposure period of 24 h) and 30 mM; (exposure periods of 3 and 24 h) Cr6+. We also showed that cell viability of samples treated with 15 and 30 mM Cr6+ significantly decreased. Accumulation of metal resulted in proline accumulation in R. farinacea thalli; however, when photodestructive effects on photosystem II occurred, proline intracellular concentration declined. On the basis of these results, we suggest that proline accumulation might not be the stress marker during heavy metal stress.  相似文献   

16.
We have previously described experimental conditions where basal methylglucose transport in adipocytes exhibited an apparent Km of approximately 35 mM. Under those conditions insulin stimulated transport predominantly by decreasing the transport Km (Whitesell, R. R., and Abumrad, N. A. (1985) J. Biol. Chem. 260, 2894-2899). Our findings were in contrast with earlier reports that the Km of basal glucose transport was low (3-5 mM) and similar to that of transport in insulin-treated cells. In this study we have investigated the effect of different experimental conditions on the kinetics of basal glucose transport in adipocytes. When transport was assayed at 37 degrees C, cell agitation for 10 min prior to the transport assay decreased the basal Km from 35 to 12 mM. Deprivation of metabolic substrate produced a further reduction down to 2 mM. Refeeding starved cells with 1 mM glucose returned the Km back up to 12 mM in agitated cells and to 40 mM in stabilized cells. The effects of agitation to lower and of glucose to raise the basal Km were prevented by preincubating cells with dinitrophenol. Cell agitation or substrate lack did not alter the Vmax of basal transport and were without effect on both Km and Vmax in insulin-treated cells. The temperature dependencies of the kinetics of basal and stimulated transport were studied. A decrease in the assay temperature from 37 to 23 degrees C caused both basal Km and Vmax to drop proportionately from 25 to 5 mM, and 13 to 3.6 nmol/(microliter X min), respectively. In insulin-stimulated cells, only the Vmax was decreased (Km went from 3.5 to 3 mM, Vmax from 45 to 17 nmol/(microliter X min]. The results support the concept that experimental conditions can produce large changes in the Km of basal glucose transporters. Furthermore they explain why, under certain assay conditions (with temperatures around 23 degrees C or with deprivation of metabolic substrate), the effect of insulin on transport Km is not observed. Our data also suggest that basal transport characteristics do not persist in insulin-treated cells. We would propose that one of the actions of insulin (in addition to raising Vmax) is to change the characteristics of basal transporters by overriding metabolic factors which keep the Km high. Alternatively, insulin could cause the disappearance of basal transporters as new and different ones are recruited from intracellular stores.  相似文献   

17.
Characterization of proline endopeptidase from rat brain   总被引:1,自引:0,他引:1  
P C Andrews  C M Hines  J E Dixon 《Biochemistry》1980,19(24):5494-5500
A homogeneous proline endopeptidase from rat brain is characterized with respect to its substrate specificity and the residues essential for catalysis. The two fluorogenic substrate analogues tested, pyroglutamylhistidylprolyl-beta-naphthylamide and pyroglutamy(N-benzylimidazolyl)-histidylprolyl-beta-naphthylamide, have higher Vmax values (19.5 and 26.9 mumol . min-1 . mg-1, respectively) and considerably lower Km values (0.034 and 0.020 mM, respectively) than pyroglutamylhistidylprolylamide (Vmax = 2.9 mumol . min-1 . mg-1 and Km = 4.1 mM). Both fluorogenic substrates give rise to pH optima and pH-rate profiles similar to those of the amide. Values of Km and kcat are determined as a function of pH. Km is pH independent, with the titration curve for kcatKm-1 implicating an active-site residue(s) with a pKa of 6.2. Proline endopeptidase can be completely inactivated by low concentrations of diisopropyl fluorophosphate with an observed second-order rate constant of 2.5 x 10(4) min-1 . M-1. The stoichiometry of the alkylphosphorylation is 0.83 mol/mol of enzyme. The pH dependence of the inactivation by diisopropylfluorophosphate implicates a residue(s) involved in covalent bond formation having a pKa of 6.0. These data suggest that proline endopeptidase is a serine proteinase.  相似文献   

18.
Amino acid transport in horse erythrocytes is regulated by three co-dominant allelomorphic genes coding for high-affinity transport activity (system asc1), low-affinity transport activity (system asc2) and transport-deficiency, respectively. The asc systems are selective for neutral amino acids of intermediate size, but unlike conventional system ASC, do not require Na+ for activity. In the present series of experiments we have used a combined kinetic and genetic approach to establish that dibasic amino acids are also asc substrates, systems asc1 and asc2 representing the only mediated routes of cationic amino acid transport in horse erythrocytes. Both transporters were found to exhibit a strong preference for dibasic amino acids compared with neutral amino acids of similar size. Apparent Km values (mM) for influx via system asc1 were L-lysine (9), L-ornithine (27), L-arginine (27), L-alanine (0.35). Corresponding Vmax estimates (mmol/l cells per h, 37 degrees C) were L-lysine (1.65), L-ornithine (2.15), L-arginine (0.54), L-alanine (1.69). Apparent Km values for L-lysine and L-ornithine influx via system asc2 were approximately 90 and greater than 100 mM, respectively, with Vmax values greater than 2 and greater than 1 mmol/l cells per h, respectively. Apparent Km and Vmax values for L-alanine uptake by system asc2 were 14 mM and 6.90 mmol/l cells per h. In contrast, L-arginine was transported by system asc2 with the same apparent Km as L-alanine (14 mM), but with a 77-fold lower Vmax. This dibasic amino acid was shown to cause cis- and trans-inhibition of system asc2 in a manner analogous to its interaction with system ASC, where the side-chain guanidinium group is considered to occupy the Na+-binding site on the transporter. Concentrations of extracellular L-arginine causing 50% inhibition of zero-trans L-alanine influx and half-maximum inhibition of L-alanine zero-trans efflux were 14 mM (extracellular L-alanine concentration 15 mM) and 3 mM (intracellular L-alanine concentration 15.5 mM), respectively. We interpret these observations as evidence of structural homology between the horse erythrocyte asc transporters and system ASC. Physiologically, intracellular L-arginine may function as an endogenous inhibitor of system asc2 activity.  相似文献   

19.
It is well established that 3-hydroxybutyrate can serve as an energy source for the brain. Since substrate utilization may be regulated in part by transport across the cellular membrane, we investigated the uptake of 3-hydroxybutyrate by primary cultures of rat brain astrocytes. Measurement of the net uptake indicated a saturable system and a Lineweaver-Burke type plot was consistent with a single carrier-mediated mechanism with a Km of 6.03 mM and a Vmax of 32.7 nmol/30 seconds/mg protein. The rate of uptake at pH 6.2 was more than ten times the rate at pH 8.2, with the rate at pH 7.4 being intermediate between these values, suggesting the possibility of cotransport with H+ or exchange with OH (antiport). Mersalyl had only a slight effect on the transport of 3-hydroxybutyrate, suggesting that sulfhydryl groups are not involved in the transport of this monocarboxylic acid. Phenylpyruvate and -ketoisocaproate also attenuated the transport, but lactate had only a marginal effect. These results suggest that the utilization of 3-hydroxybutyrate as an energy source by astrocytes is regulated in part by carrier-mediated transport and that the uptake system is different from the lactate transport system.These data were presented in part at the FASEB Meeting, April, 1990  相似文献   

20.
Chinese hamster ovary cells (CHO-K1) starved for 24 h for amino acids show a severalfold increase in velocity of proline transport through the A system (Vmax is five times that of unstarved cells). This increase is inhibited by cycloheximide, actinomycin D, N-methyl-alpha-amino isobutyric acid (MeAIB, a non-metabolizable specific A system amino acid analog), and by other amino acids that are generally transported by the A system. However, transport by the A system is not a prerequisite for this repression, and all compounds that have affinity for the A system do not necessarily act as "co-repressors." The addition of proline, MeAIB, or other amino acids, as described above, to derepressed cells results in a rapid decrease in A system activity. As shown with proline and MeAIB, this decrease in activity is in part due to a rapid trans-inhibition and a slow, irreversible inactivation of the A system. Neither process is inhibited by cycloheximide or actinomycin D. Alanine antagonizes the growth of CHO-K1 pro cells by preventing proline transport, and alanine-resistant mutants (alar) have been isolated (Moffett et al., Somatic Cell Genet. 9:189-213, 1983). alar2 and alar4 are partial and full constitutive mutants for the A system and have two and six times the Vmax for proline uptake by the A system, respectively. The A system in alar4 is also immune to the co-repressor-induced inactivation. Both alar2 and alar4 phenotypes are recessive. Alar3 shows an increase in Vmax and Km for proline transport through the A system, and this phenotype is codominant. All three mutants have a pleiotropic effect, producing increases in activity of the ASC and P systems of amino acid transport. This increase is not due to an increase in the Na+ gradient. The ASC and P phenotypes behave similarly to the A system in hybrids. A model has been proposed incorporating these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号