首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Effects of drugs on resting potential, membrane resistance, and excitatory and inhibitory postsynaptic potentials (e.p.s.p.'s and i.p.s.p.'s) of lobster muscle fibers were studied using intracellular microelectrodes Acetylcholine, d-tubocurarine, strychnine, and other drugs of respectively related actions on vertebrate synapses were without effects even in 1 per cent solutions (10- w/v). Gamma-aminobutyric acid (GABA) acted powerfully and nearly maximally at 10-7 to 10-6 w/v. Membrane resistance fell two- to tenfold, the resting potential usually increasing slightly. This combination of effects, which indicates activation of inhibitory synaptic membrane, was also produced by other short chain ω-amino acids and related compounds that inactivate depolarizing axodendritic synapses of cat. The conductance change, involving increased permeability to Cl-, by its clamping action on membrane potential shortened as well as decreased individual e.p.s.p.'s. Picrotoxin in low concentration (ca. 10-7 w/v) and guanidine in higher (ca. 10-3 w/v) specifically inactivate inhibitory synapses. GABA and picrotoxin are competitive antagonists. The longer chain ω-amino acids which inactivate hyperpolarizing axodendritic synapses of cat are without effect on lobster neuromuscular synapse. However, one member of this group, carnitine (β-OH-GABA betaine), activated the excitatory synapses, a decreased membrane resistance being associated with depolarzation. The pharmacological properties of lobster neuromuscular synapses and probably also of other crustacean inhibitory synapses appear to stand in a doubly inverted relation to axodendritic synapses of cat.  相似文献   

5.
The development of multiterminal innervation from a single identifiable excitatory motoneuron to the lobster distal accessory flexor muscle (DAFM) was studied by serial section electron microscopy. The number, size, and location of neuromuscular synapses and presynaptic dense bars within the peripheral branching pattern of the axon was determined in cross sections of the DAFM in 1st (24-hr-old)-, 4th (2-week-old)-, and 12th (1-year-old)-stage lobsters. The mean size of synapses remains fairly constant in these three stages but synaptic density, i.e., the number of synapses per unit length of fiber, increased more than 20-fold between the 1st and 4th stages and more than 5-fold between the 4th and 12th stages. Synaptic surface area per fiber length showed a parallel increase. Consequently there is a proliferation of synapses along the length of individual muscle fibers during primary development. Furthermore from the 1st stage where only a few fibers are innervated, synapses proliferate to many more fibers in the 4th and to all fibers in the 12th stage. The neuromuscular synapses are distributed in different proportions within the axonal branching pattern in the three stages. Based on the number and size of synapses and presynaptic dense bars, the main axon and primary branches provide almost equal amounts of innervation in the 1st stage. With further branching in the 4th stage, the main axon accounts for only 20–25% of the innervation; the primary branches for 45% and other finer branches the remainder. By the 12th-stage synapses are found only on branches other than the main axon and its primary offshoots. There is therefore a shift in innervation from the main axon to the primary branches and then to the finer branches during primary development. This shift in innervation involves the formation of new synaptic terminals and the restructuring of existing ones into axonal areas. In this way the multiterminal innervation arising from an identifiable motoneuron is remodeled.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Slow Ca-dependent action potentials were studied in skeletal muscle fibers from different Neuromuscular Diseases (NMD). Biopsies were obtained from: 3 myopathies [Fascioscapulohumeral Dystrophy (FSH) and Polymyositis (PM)], 6 patients with other diseases (CD) [Amyotrophic Lateral Sclerosis (ALS), Central Core Disease, Mitochondrial Myopathy, Polyneuritis (PN), von Eulenberg's Paramyotonia], and 8 normal control muscles. Experiments were carried out in muscle fibers under current-clamp conditions. Membrane currents other than Ca ones were abolished or greatly diminished. Muscle fibers produced any of 3 types of responses, when stimulated by depolarizing pulses: fully developed Ca-action potentials (CaAP), abortive non-regenerative Ca responses (NrR), or only capacitive passive responses (WR). The 3 types of responses were not dependent on the basal conditions of the fibers. The frequency of observation of CaAPs was significantly higher in myopathic disease. In myopathies, 46% of the muscle fibers had CaAPs, while only 22% of fibers from CD and 15% of the fibers from normal muscles showed CaAPs. No differences were observed in the resting constants as well as in the CaAPs parameters between normal and diseased muscle fibers.  相似文献   

14.
15.
1. Single channel activity was recorded from muscle membranes of the lobster Panulirus penicillatus using the patch-clamp technique. 2. Cell-attached, outside-out and inside-out patches were prepared from the deep abdominal extensor muscle. 3. Low amplitude single channel currents were observed in most patches, and were identified as being chloride-currents. 4. The chloride channel was active spontaneously, and tended to desensitize when outside-out patches were exposed to a small jet of glutamate. 5. Amplitude histograms of single channel currents presented a well defined peak of 8 pA at a membrane potential of -160 mV, while open and closed time histograms were fit to single exponential functions with tau open of 3.27 msec and tau closed of 31.58 msec.  相似文献   

16.
17.
Summary The threedimensional ultrastructure of presynaptic dense bars was examined by serial section electron microscopy in the excitatory neuromuscular synapses of the accessory flexor muscle in the limbs of larval, juvenile, and adult lobsters. The cross-sectional profile of the dense bar resembles an asymmetric hourglass, the part contacting the presynaptic membrane being larger than that projecting into the terminal. The bar has a height of 55–65 nm and varies in length from 75–600 nm. In its dimensions it resembles the dense projections in the synapses of the CNS of insects and vertebrates. The usual location of these dense bars is at well defined synapses, though a few are found at extrasynaptic sites either in the axon or terminal. In the latter case the bars are close to synapse-bearing regions, particularly in the larval terminals, suggesting that the extrasynaptic bars denote early events in synapse formation. In all cases the bars are intimately associated with electron lucent, synaptic vesicles located on either side, in the indentation of its hourglass-shaped cross sectional profile. The vesicles occur along the length of the bar and contact the presynaptic membrane. Consequently the dense bar may serve to align the vesicles at the presynaptic membrane prior to exocytosis. A similar role has been suggested for the presynaptic dense bodies at the neuromuscular junction of the frog, where synaptic vesicles form a row on either side of this structure.Supported by Muscular Dystrophy Association of Canada and NSERCC. Generous use of laboratory facilities at Woods Hole was provided by the late Fred Lang  相似文献   

18.
Acetylcholine was shown to maintain the efficiency of a fatigued muscle of rat increasing the evoked transmitter release and inducing a hyperpolarization of the muscle fibre membrane. The effects proved to be long-term ones. Modulatory effects of acetylcholine were shown to be realized via structures which differed pharmacologically from the typical n- and m-cholinoreceptors with the participation of ouabain-sensitive isoforms of Na+, K(+)-ATPase. The data obtained corroborates existence of a long-term neuronal regulation of the neuromuscular transmission efficiency involving non-quantal acetylcholine. The regulatory pathways are supposed to be different in muscle fibres with different functional characteristics and different ability of adaptation under physiological loading.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号