首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stratified mixed-culture biofilm model for anaerobic digestion   总被引:1,自引:0,他引:1  
Development of a novel two-layer anaerobic biofilm model is based on substrate utilization kinetics and mass transport. The model is applied to steady-state conditions for a fixed-film anaerobic reactor. The microbial film is considered to consist of two distinct biofilm layers, one adjacent to the second, with an acidogenic bacteria biofilm forming the outer layer and a methanogenic film the inner one. The model assumes that sugars are only metabolized by the first layer and converted into volatile fatty acids (VFA), while fatty acids are taken up only by the inner layer. The model is able to predict both substrate flux net uptake and methane production for steady-state conditions. The results of modeling agree with methane production experimental data published elsewhere. Further, the model shows why layered fixed-film reactors can withstand high and inhibitory concentrations of volatile fatty acids as well as severe overloading without failure.  相似文献   

2.
In a related brewing study detailed characteristics of fermentations displaying effective yeastaminopterin interaction were presented.Fermentative yeast types (certain Saccharomyces species and Selenotila intestinalis) proved effective aminopterin reactors whereas oxidative yeasts (certain Candida, Cryptococcus, Pichia, Rhodotorula, Saccharomyces, and Trigonopsis species) proved ineffective reactors. In general effective reactors were polyploids characterized by the lack of film or pellicle formation and ineffective reactors the opposite. In stationary fermentations the Fleischmann 139 strain of S. cerevisiae proved a fair reactor. When aerated it proved an ineffective reactor and aminopterin or products there-of stimulated growth. Conversely aeration enhanced aminopterin activity of effective reactor yeasts.The positive effect of biotin on aminopterin activity and the negative effect of yeast extract, L-asparagine, adenine and thymine is shown and compared and contrasted with earlier reported studies.These findings supported by outside data suggest that oxidative yeasts (and bacteria) can readily elicit enzymes capable of inactivating aminopterin whereas fermentative types are lacking in this capability. Finally that past yeast-aminopterin studies were conducted with oxidative yeast types.Advantages of effective aminopterin reactor yeasts to be published elsewhere include improved ultrastructure using KMnO4–OsO4 fixation, a yeast bioassay procedure for detecting aminopterin in plasma and urine, and cell synchronization.Non-Standard Abbreviation apt aminopterin  相似文献   

3.
Biofilms can cause severe problems to human health due to the high tolerance to antimicrobials; consequently, biofilm science and technology constitutes an important research field. Growing a relevant biofilm in the laboratory provides insights into the basic understanding of the biofilm life cycle including responses to antibiotic therapies. Therefore, the selection of an appropriate biofilm reactor is a critical decision, necessary to obtain reproducible and reliable in vitro results. A reactor should be chosen based upon the study goals and a balance between the pros and cons associated with its use and operational conditions that are as similar as possible to the clinical setting. However, standardization in biofilm studies is rare. This review will focus on the four reactors (Calgary biofilm device, Center for Disease Control biofilm reactor, drip flow biofilm reactor, and rotating disk reactor) approved by a standard setting organization (ASTM International) for biofilm experiments and how researchers have modified these standardized reactors and associated protocols to improve the study and understanding of medical biofilms.  相似文献   

4.
Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium aciditolerans could generate a high hydrogen production rate of 5600 mL H2/day/L, corresponding to a yield of 132 mL H2/g volatile solid (VS). The effluent from the hydrogen reactor was further converted to methane in the second reactor with the optimal production rate of 3380 mL CH4/day/L, corresponding to a yield of 239 mL CH4/g VS. Aceticlastic Methanosarcina mazei was the dominant methanogen in the methanogenesis stage. This work demonstrates that biohydrogen production can be very efficiently coupled with a subsequent step of methane production using desugared molasses. Furthermore, the mixed gas with a volumetric content of 16.5% H2, 38.7% CO2, and 44.8% CH4, containing approximately 15% energy by hydrogen is viable to be bio‐hythane.  相似文献   

5.
In natural and man-made ecosystems nitrifying bacteria experience frequent exposure to oxygen-limited conditions and thus have to compete for oxygen. In several reactor systems (retentostat, chemostat and sequencing batch reactors) it was possible to establish co-cultures of aerobic ammonium- and nitrite-oxidizing bacteria at very low oxygen concentrations (2–8 μM) provided that ammonium was the limiting N compound. When ammonia was in excess of oxygen, the nitrite-oxidizing bacteria were washed out of the reactors, and ammonium was converted to mainly nitrite, nitric oxide and nitrous oxide by Nitrosomonas-related bacteria. The situation could be rapidly reversed by adjusting the oxygen to ammonium ratio in the reactor. In batch and continuous tests, no inhibitory effect of ammonium, nitric oxide or nitrous oxide on nitrite-oxidizing bacteria could be detected in our studies. The recently developed oxygen microsensors may be helpful to determine the kinetic parameters of the nitrifying bacteria, which are needed to make predictive kinetic models of their competition.  相似文献   

6.
Cereal distillers grains, a by-product from bioethanol industry, proved to be a suitable feedstock for biogas production in laboratory scale anaerobic digesters. Five continuously stirred tank reactors were run under constant conditions and monitored for biogas production and composition along with other process parameters. Iron additives for sulfide precipitation significantly improved the process stability and efficiency, whereas aerobic pretreatment of the grains had no effect. The microbial communities in the reactors were investigated for their phylogenetic composition by terminal restriction fragment length polymorphism analysis and sequencing of 16S rRNA genes. The bacterial subcommunities were highly diverse, and their composition did not show any correlation with reactor performance. The dominant phylotypes were affiliated to the Bacteroidetes. The archaeal subcommunities were less diverse and correlated with the reactor performance. The well-performing reactors operated at lower organic loading rates and amended with iron chloride were dominated by aceticlastic methanogens of the genus Methanosaeta. The well-performing reactor operated at a high organic loading rate and supplemented with iron hydroxide was dominated by Methanosarcina ssp. The reactor without iron additives was characterized by propionate and acetate accumulation and high hydrogen sulfide content and was dominated by hydrogenotrophic methanogens of the genus Methanoculleus.  相似文献   

7.
This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.  相似文献   

8.
Methanogenesis in thermophilic biogas reactors   总被引:2,自引:0,他引:2  
Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most probable number (MPN) technique with acetate or hydrogen as substrate were further found to vary depending on the loading rate and the stability of the reactor. The numbers of methanogens counted with antibody probes in one of the reactor samples was 10 times lower for the hydrogen-utilizing methanogens compared to the counts using the MPN technique, indicating that other non-reacting methanogens were present. Methanogens that reacted with the probe againstMethanobacterium thermoautotrophicum were the most numerous in this reactor. For the acetate-utilizing methanogens, the numbers counted with the antibody probes were more than a factor of 10 higher than the numbers found by MPN. The majority of acetate utilizing methanogens in the reactor wereMethanosarcina spp. single cells, which is a difficult form of the organism to cultivatein vitro. No reactions were observed with antibody probes raised againstMethanothrix soehngenii orMethanothrix CALS-1 in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate into methane. When the concentration of acetate was less than approx. 1 mM, most of the acetate was oxidized via a two-step mechanism (syntrophic acetate oxidation) involving one organism oxidizing acetate into hydrogen and carbon dioxide and a hydrogen-utilizing methanogen forming the products of the first microorganism into methane. In thermophilic biogas reactors, acetate oxidizing cultures occupied the niche ofMethanothrix species, aceticlastic methanogens which dominate at low acetate concentrations in mesophilic systems. Normally, thermophilic biogas reactors are operated at temperatures from 52 to 56° C. Experiments using biogas reactors fed with cow manure showed that the same biogas yield found at 55° C could be obtained at 61° C after a long adaptation period. However, propionate degradation was inhibited by increasing the temperature.  相似文献   

9.
In some biotechnological processes like wastewater treatment and biotransformation, substances are involved which are inhibitory or even toxic to the microorganisms. Their presence changes the cell physiology or even acts lethal on the cells so that the process breaks down completely. For studying such processes, a two‐stage continuous‐flow stirred tank reactor (CSTR) cascade was developed where the toxic substance is only supplied to the second reactor. Mathematical modeling of the system showed that identical steady‐state conditions can be established in both bioreactors of the two‐stage CSTR cascade when the dilution rate of the second reactor is twice as high as the dilution rate in the first reactor, provided that both reactors are fed with the same culture medium and possess an identical working volume. The theoretically derived concept was verified by cultivating Saccharomyces cerevisiae CBS 8066 under glucose‐limited aerobic conditions. Independently of the dilution rates established (D1 in the range of 0.26 to 0.38 h–1 and D2 = 2·D1), the steady‐state values of the biomass, glucose and ethanol concentration were almost identical in both reactors. Moreover, the dynamic behavior after each stepwise change of the dilution rates was also identical in both reactors, which was detected by dissolved‐oxygen measurements. Finally, the system was applied to the whole‐cell biotransformation of ethyl 2‐chloro‐3‐oxo‐butanoate as an example.  相似文献   

10.
The formation of anaerobic granular sludge on wastewater from sugar-beet processing was examined in upflow anaerobic sludge blanket reactors. Two strategies were investigated: addition of high-energy substrate, i.e. sugars, and varying the reactor liquid surface tension. When there were insufficient amounts of sugars i.e. less than 7% of the chemical O2 demand of the influent, no granulation was observed; moreover lowering the reactor liquid surface tension below 48 mN/m was found to increase biomass wash-out. On the other hand, when there were sufficient sugars, granular sludge growth occurred; moreover operating the reactor at a low reactor liquid surface tension reduced biomass wash-out and increased granular yield.  相似文献   

11.
Long term fed-batch composting experiments were conducted for 200 days using two types of bulking agents; woodchip and PET flake, with periodic compost withdrawal through a washing process. The bacterial communities of composting materials in the two different bulking agents were also investigated by 16S rRNA gene clone analysis. The decomposition rate in both composting reactors was 86.1% and 88.2% of the total organic load, respectively. The control experiment of dead-end operation without compost withdrawal by washing process could not be maintained for more than 102 days because of its low performance. The reactor with compost withdrawal, however, improved the decomposition rate in the composting process, and could be applied in the long run. There was a significant difference in the bacterial community between the FBC reactor with woodchip and another with PET flake as the bulking agent though the decomposition rates were similar. The reactor with woodchip as the bulking agent consisted of 95% Bacillales while the PET flake reactor contained 54% of total bacteria count. In addition, Lactobacillales was dominant at 38% in the PET flake reactor and the bacterial community in general significantly differed from the woodchip reactor. Furthermore, there was a difference in the species composition in the Bacillales and the bacterial community showed a significant difference at the species level between the two reactors. Although bacterial community differed, the decomposition rates between the two reactors were similar and PET flake showed greater viability than woodchip as a bulking agent due to its high abrasion resistance and non-biodegradability.  相似文献   

12.
The effectiveness of coil UV reactor series for the online sterilization of cheese whey was compared to those of the single conventional and coil reactors at various flow rates (5–70 mL/min). The residence time varied from 168 to 12 min and from 48 to 24 min for the single and the series reactors, respectively. Hundred percent destruction efficiency could not be achieved in the single reactors whereas in the coil reactor series the destruction efficiency reached 100% at the flow rates of 35 and 40 mL/min. The rate of microbial destruction was described by polynomial equation for the single coil reactor and by exponential equations for the single conventional reactor and the coil reactor series. The temperature of the effluent decreased with the increase in flow rate in all the reactors. The maximum effluent temperatures in the single conventional reactor, single coil reactor and coil reactor series were 45.8, 46.1, and 36.4 °C (Δt = 20.8, 21.1, 11.4 °C), respectively. The flow in all the reactors was laminar (R e = 1.39–20.10) and the Dean number was in the range of 1.09–15.41 in the coil reactors. Visual observation revealed less fouling on the UV lamps of coil reactors than on that of the conventional reactor due to the impact of Dean flow. The total operating time during which 100% destruction efficiency is achieved prior to the advent of fouling was 240 min in the coil reactor series compared to only 45 min in the conventional reactor.  相似文献   

13.
We have developed an economical fluidized-bed immobilized-enzyme cornstarch hydrolysis reactor employing an inexpensive glucoamylase-on-alumina (covalently bonded) catalyst having a high initial activity (130 units/g) and excellent long term stability (t1/2 = 6450 hr at 50°C). The reactor can give higher yields of dextrose from streams containing ~30% (wt) low dextrose equivalent (DE) cornstarch than can a comparable fixed-bed reactor because its design exploits the fact that fluidixation permits the use of very small catalyst particles (down to 50μm in our case) which overcomes the yield-limiting diffusion-associated problems encountered in the use of conventional fixed-bed cornstarch hydrolysis reactors. Furthermore, even when small catalyst particles are used the fluidized-bed reactor does not suffer from plugging and high pressure drop problems typical of fixed-bed reactors. The results of an initial economic analysis based on bench-scale results indicate that the processing cost for a plant using this new technology to produce 100 × 106lb dextrose/year from low DE cornstarch would be as much as 33% lower than for a comparable plant employing conventional soluble-enzyme technology.  相似文献   

14.
A column reactor with an annular cross section was formed by rolling up DEAE cellulose paper and a screening spacer. Glucoamylase was attached by ion adsorption. For the spacer used, pressure drop was very low, suggesting that this form may be useful with feed streams that are not completely particle-free. Tests of this reactor at the high substrate concentrations characteristic of commercial reactors showed very little diffusional resistance, exhibiting zero-order behavior over most of the concentration range. At low concentrations, the reactor had an apparent “half-order” behavior caused by diffusional limitation in the paper. In this range, flow rate influenced the reaction rate, showing that mass transfer in the main stream also is a contributing factor in this range. Because of the high concentrations and the low Michaelis constant (0.0011 M) the reactor does not show first-order behavior, even at very high conversions. The design of a plant-scale reactor was formulated from these data. The increase in the quantity of enzyme necessary to compensate for the effects of diffusion was only a few percent. Two reactors were formed with sheets nonporous to the enzyme, binding the enzyme with cyanogen bromide after forming the reactor. The amount of enzyme bound was about one monolayer, and there appeared to be no diffusional limitations, even at low substrate concentrations.  相似文献   

15.
Raynal M  Pruden A 《Biodegradation》2008,19(2):269-282
This study explores the effect of microbial consortium composition and reactor configuration on methyl tert-butyl ether (MTBE) biodegradation in the presence of benzene, toluene, ethylbenzene and p-xylenes(BTEX). MTBE biodegradation was monitored in the presence and absence of BTEX in duplicate batch reactors inoculated with distinct enrichment cultures: MTBE only (MO—originally enriched on MTBE) and/or MTBE BTEX (MB—originally enriched on MTBE and BTEX). The MO culture was also applied in a semi-batch reactor which received both MTBE and BTEX periodically in fresh medium after allowing cells to settle. The composition of the microbial consortia was explored using a combination of 16S rRNA gene cloning and quantitative polymerase chain reaction targeting the known MTBE-degrading strain PM1T. MTBE biodegradation was completely inhibited by BTEX in the batch reactors inoculated with the MB culture, and severely retarded in those inoculated with the MO culture (0.18 ± 0.04 mg/L-day). In the semi-batch reactor, however, the MTBE biodegradation rate in the presence of BTEX was almost three times as high as in the batch reactors (0.48 ± 0.2 mg/L-day), but still slower than MTBE biodegradation in the absence of BTEX in the MO-inoculated batch reactors (1.47 ± 0.47 mg/L-day). A long lag phase in MTBE biodegradation was observed in batch reactors inoculated with the MB culture (20 days), but the ultimate rate was comparable to the MO culture (0.95 ± 0.44 mg/L-day). Analysis of the cultures revealed that strain PM1T concentrations were lower in cultures that successfully biodegraded MTBE in the presence of BTEX. Also, other MTBE degraders, such as Leptothrix sp. and Hydrogenophaga sp. were found in these cultures. These results demonstrate that MTBE bioremediation in the presence of BTEX is feasible, and that culture composition and reactor configuration are key factors.  相似文献   

16.
The effect of sulfate on the anaerobic breakdown of mixtures of acetate, propionate and butyrate at three different sulfate to fatty acid ratios was studied in upflow anaerobic sludge blanket reactors. Sludge characteristics were followed with time by means of sludge activity tests and by enumeration of the different physiological bacterial groups. At each sulfate concentration acetate was completely converted into methane and CO2, and acetotrophic sulfate-reducing bacteria were not detected. Hydrogenotrophic methanogenic bacteria and hydrogenotrophic sulfate-reducing bacteria were present in high numbers in the sludge of all reactors. However, a complete conversion of H2 by sulfate reducers was found in the reactor operated with excess sulfate. At higher sulfate concentrations, oxidation of propionate by sulfate-reducing bacteria became more important. Only under sulfate-limiting conditions did syntrophic propionate oxidizers out-compete propionate-degrading sulfate reducers. Remarkably, syntrophic butyrate oxidizers were well able to compete with sulfate reducers for the available butyrate, even with an excess of sulfate. Correspondence to: A. Visser  相似文献   

17.
The influence of mixing and phase hold-ups on gas-producing fluidized-bed reactors was investigated and compared with an ideal flow reactor performance (CSTR). The liquid flow in the anaerobic fluidized bed reactor could be described by the classical axially dispersed plug flow model according to measurements of residence time distribution. Gas effervescence in the fluidized bed was responsible for bed contraction and for important gas hold-up, which reduced the contact time between the liquid and the bioparticles. These results were used to support the modeling of large-scale fluidized-bed reactors. The biological kinetics were determined on a 180-L reactor treating wine distillery wastewater where the overall total organic carbon uptake velocity could be described by a Monod model. The outlet concentration and the concentration profile in the reactor appeared to be greatly influenced by hydrodynamic limitations. The biogas effervescence modifies the mixing characteristics and the phase hold-ups. Bed contraction and gas hold-up data are reported and correlated with liquid and gas velocities. It is shown that the reactor performance can be affected by 10% to 15%, depending on the mode of operation and recycle ratio used. At high organic loading rates, reactor performance is particularly sensitive to gas effervescence effects. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

18.
Incandescent lamp illumination enhanced methane production from a thermophilic anaerobic digestion reactor (55°C) supplied with glucose. After 10 days of operation, the volume of methane produced from light reactors was approximately 2.5 times higher than that from dark reactors. A comparison of the carbon balance between light and dark conditions showed that methane produced from hydrogen and carbon dioxide in the light reactors was higher than that from the dark reactors. When hydrogen or acetate was fed into the reactors, methane production with added hydrogen was faster and higher under light conditions than under dark conditions. The use of blue light-emitting diodes also enhanced methane production over that under dark conditions. The 16S rRNA gene copy numbers for Methanothermobacter spp. in the light reactor and in the dark reactor were at the same level. The copy number for Methanosarcina spp. in the light reactors was approximately double than that in the dark reactors. These results suggest that blue light enhances the methanogenic activity of hydrogenotrophic methanogens.  相似文献   

19.
Partially purified glucoamylase from Aspergillus awamori NRRL 3112 was immobilized on diethylaminoethyl cellulose in the presence of low ionic-strength acetate buffers at pH 4.2. The active enzyme–cellulose complex was used to convert starch substrates continuously to glucose in stirred reactors. Substrate concentrations as high as 30% could be quantitatively converted to glucose at a rate of more than 25 mg/min/liter at 55°C for periods of 3 to 4 weeks in a 4-liter reactor. Shutdowns were due to mechanical problems and not to loss of enzymes, which could be recovered with no appreciable loss of specific activity. Transfer products, such as isomaltose and panose, were present in immobilized enzyme-produced syrups but to no greater degree than in soluble glucoamylase digests of starch.  相似文献   

20.
The anaerobic degradation of terephthalate as sole substrate was studied in three anaerobic upflow reactors. Initially, the reactors were operated as upflow anaerobic sludge bed (UASB) reactors and seeded with suspended methanogenic biomass obtained from a full-scale down-flow fixed film reactor, treating wastewater generated during production of purified terephthalic acid. The reactors were operated at 30, 37, and 55 degrees C. The terephthalate removal capacities remained low in all three reactors (<4 mmolxL-1xday-1, or 1 g of chemical oxygen demand (COD)xL-1xday-1) due to limitations in biomass retention. Batch experiments with biomass from the UASB reactors revealed that, within the mesophilic temperature range, optimal terephthalate degradation is obtained at 37 degrees C. No thermophilic terephthalate-degrading culture could be obtained in either continuous or batch cultures. To enhance biomass retention, the reactors were modified to anaerobic hybrid reactors by introduction of two types of reticulated polyurethane (PUR) foam particles. The hybrid reactors were operated at 37 degrees C and seeded with a mixture of biomass from the UASB reactors operated at 30 and 37 degrees C. After a lag period of approximately 80 days, the terephthalate conversion capacity of the hybrid reactors increased exponentially at a specific rate of approximately 0.06 day-1, and high removal rates were obtained (40-70 mmolxL-1xday-1, or 10-17 g of CODxL-1xday-1) at hydraulic retention times between 5 and 8 h. These high removal capacities could be attributed to enhanced biomass retention by the development of biofilms on the PUR carrier material as well as the formation of granular biomass. Biomass balances over the hybrid reactors suggested that either bacterial decay or selective wash-out of the terephthalate fermenting biomass played an important role in the capacity limitations of the systems. The presented results suggest that terephthalate can be degraded at high volumetric rates if sufficiently long sludge ages can be maintained, and the reactor pH and temperature are close to their optima.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号