首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the mature leaves of 13 species from 9 families of homosporous leptosporangiate ferns was examined by light and electron microscopy. In 11 species (Adiantum pedatum L., Athyrium angustum Roth., Cyathea dregei Sm., Lygodium palmatum Sw., Mohria caffrorum (L.) Desv., Oleandra distenta Kuntae, Pellaea calomelanos (Sw.) Link, Pityrogramma calomelanos (L.) Link var. austro-americana (Domn.) Farw., Trichomanes melanotrichum Schlechtend., Vittaria guineensis Desv., and Woodwardia orientalis Sw.) the lamina veins are collateral; in two (Phlebodium aureum and Platycerium bifurcatum), bicollateral as well as collateral veins are present. The vascular bundles in the midribs of C. dregei and those in the petioles and midribs of Phlebodium and Platycerium are concentric. All of the vascular bundles in the homosporous leptosporangiate ferns studied are delimited by a tightly arranged cylinder of endodermal cells with Casparian strips. Within the veins without parenchymatic xylem sheaths, some sieve elements commonly abut tracheary elements with hydrolyzed primary walls. The majority of vascular parenchyma cells contact both sieve elements and tracheary elements, although some parenchyma cells are associated with only one type of conducting cell. Transfer cells (parenchyma cells with wall ingrowths) occur in the veins of 6 species examined. Most of the vascular parenchyma cells, however, have no distinctive structural characteristics. The sieve elements of the homosporous leptosporangiate ferns are very similar structurally and each consists of a plasmalemma, a parietal, anastomosing network of smooth endoplasmic reticulum (ER), and variable numbers of refractive spherules, plastids and mitochondria. The sieve elements of L. palmatum also contain plasmalemma tubules. The parenchymatic cells of the leaf (mesophyll, endodermal and vascular parenchyma cells) are united by desmotubule-containing plasmodesmata. The sieve elements are connected to each other by sieve pores and to parenchymatic cells by pore-plasmodesma connections. The sieve-area pores contain variable amounts of membranous material, apparently ER membranes, but do not occlude them. These membranes commonly are found in continuity with the parietal ER of the lumen. Based upon the relative frequencies of cytoplasmic connections between cell types, the photosynthates may move from the mesophyll to the site of phloem loading via somewhat different pathways in different species of homosporous leptosporangiate ferns.  相似文献   

2.
The aerial shoots of Equisetum hyemale L. var. affine (Engelm.)A. A. Eat. were examined with the electron microscope as partof a continuing study of sieveelement development in the lowervascular plants. Young E. hyemale sieve elements are distinguishablefrom all other cell types within the vascular system by thepresence of refractive spherules, proteinaceous bodies whichdevelop within dilated portions of the endoplasmic reticulum(ER). Details of cell wall thickening differ between protophloemand metaphloem sieve elements. Following cell wall thickeningthe ER increases in quantity and aggregates into stacks. Shortlythereafter, nuclear degeneration is initiated. During the periodof nuclear degeneration some cytoplasmic components-dictyosomes,microtubules and ribosomes-degenerate and disappear, while organellessuch as mitochondria and plastids persist. The latter undergostructural modifications and become parietal in distribution.Eventually the massive quantities of ER are reduced, leavingthe lumen of the cell clear in appearance. At maturity the plasmalemma-linedsieve element contains a parietal network of tubular ER, aswell as mitochondria, plastids, and refractive sphemh At thistime many of the spherules are discharged into the region ofthe wall. Sieveelement pores occur in both lateral and end walls.At maturity many pores are traversed by large numbers of ERmembranes. The metaphloem sieve elements of the mid-internodalregions apparently are sieve-tube members. The connections betweenmature protophloem sieve elements and pericycle cells are associatedwith massive wall thickenings on the pericyclecell side.  相似文献   

3.
Roots of Equisetum hyemale L. var. affine (Engelm.) A. A. Eat. were fixed in glutaraldehyde, postfixed in osmium tetroxide, and sieve elements of various ages were examined with the electron microscope. Young sieve elements are distinguished by their position within the vascular cylinder and by the presence of numerous refractive spherules, which originate within dilated portions of the endoplasmic reticulum (ER). Early in development, the sieve-element walls undergo a substantial increase in thickness. This is followed by the appearance of massive ER aggregates in the cytoplasm and then by a phase involving stacking and sequestering of the remaining ER. Nuclear degeneration is initiated shortly after the appearance of the ER aggregates. The chromatin condenses into masses of variable size along the inner surface of the nuclear envelope. The envelope then ruptures and chromatin is released into the cytoplasm. During the period of nuclear degeneration, mitochondria and plastids undergo structural modification, while components such as dictyosomes, microtubules, and ribosomes degenerate and disappear. The remaining cytoplasmic components assume a parietal position in the cell, leaving the lumen of the cell clear in appearance. At maturity, the plasmalemma-lined sieve element contains plastids, mitochondria, some ER, and refractive spherules. At this time many of the refractive spherules are discharged into the region of the wall. Pores between sieve elements occur largely on the end walls. During pore development, tubules of ER apparently traverse the pores, but because of the presence of massive callose deposits in the material examined, the true condition of mature pores could not be determined. The connections between mature sieve elements and pericycle cells are characterized by the presence of massive wall thickenings on the pericycle-cell side. Plasmodesmata in the wall thickening are matched by pores on the sieve-element side. Ontogenetic and cytoplasmic factors argue against use of the term “companion cell” for the vascular parenchyma cells associated with the sieve elements.  相似文献   

4.
Leaf tissue of Isoetes muricata Dur. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. The very young sieve elements can be distinguished from contiguous parenchyma cells by their distinctive plastids and the presence of crystalline and fibrillar proteinaceous material in dilated cisternae of the rough ER. During differentiation, the portions of ER enclosing this proteinaceous substance become smooth surfaced and migrate to the cell wall. Along the way they apparently form multivesicular bodies which then fuse with the plasmalemma, discharging their contents to the outside. At maturity, the sieve element contains an elongate nucleus, which consists of dense chromatin material, and remnants of the nuclear envelope. In addition, the mature sieve element is lined by a plasmalemma and a parietal, anastomosing network of smooth ER. Both plastids and mitochondria are present. P-protein is lacking at all stages of development. Tonoplasts are. not discernible in mature sieve elements. The end walls of mature sieve elements contain either plasmodesmata or sieve pores or both, but only plasmodesmata occur in the lateral walls.  相似文献   

5.
Shoot tissue of Psilotum nudum (L.) Griseb. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Young sieve elements can be distinguished from contiguous parenchyma cells by their distinctive plastids, the presence of refractive spherules, and the overall dense appearance of their protoplast. The refractive spherules apparently originate in the intracisternal spaces of the endoplasmic reticulum (ER). With increasing age the sieve-element wall undergoes a marked increase in thickness. Concomitantly, a marked increase occurs in the production of dictyosome vesicles, many of which can be seen in varying degrees of fusion with the plasmalemma. Other fibril- and vesicle-containing vacuoles also are found in the cytoplasm. In many instances the delimiting membrane of these vacuoles was continuous with the plasmalemma. Vesicles and fibrillar materials similar to those of the vacuoles were found in the younger portions of the wall. At maturity the plasmalemma-lined sieve element contains a parietal network of ER, plastids, mitochondria, and remnants of nuclei. The protoplasts of contiguous sieve elements are connected by solitary pores on lateral walls and pores aggregated into sieve areas on end walls. All pores are lined by the plasmalemma and filled with numerous ER membranes which arise selectively at developing pore sites, independently of the ER elsewhere in the cell. P-protein and callose are lacking at all stages of development.  相似文献   

6.
Stem tissue of Lycopodium lucidulum Michx. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Although their protoplasts contain similar components, immature sieve elements can be distinguished from parenchymatous elements of the phloem at an early stage by their thick walls and correspondingly high population of dictyosomes and dictyosome vesicles. Late in maturation the sieve-element walls undergo a reduction in thickness, apparently due to an “erosion” or hydrolysis of wall material. At maturity, the plasmalemma-lined sieve elements contain plastids with a system of much convoluted inner membranes, mitochondria, and remnants of nuclei. Although the endoplasmic reticulum (ER) in most mature sieve elements was vesiculate, in the better preserved ones the ER formed a tubular network closely appressed to the plasmalemma. The sieve elements lack refractive spherules and P-protein. The protoplasts of contiguous sieve elements are connected with one another by pores of variable diameter, aggregated in sieve areas. As there is no consistent difference between pore size in end and lateral walls these elements are considered as sieve cells.  相似文献   

7.
Structural aspects of differentiating and mature sieve elements of perennial monocotyledons in general and of palms in particular are presented. As in other angiosperms, an immature sieve element undergoes a profound modification of the protoplast during differentiation. Intact, mature sieve elements lack nuclei, possess a parietal cytoplasm, empty lumen and sieve-plate pores that are free of obstructions. Such a structure is in general agreement with the physiological data obtained from exuding inflorescences of woody monocotyledons. Structural evidence and some tracer experiments indicate that sieve elements in perennial monocotyledons are long-lived and apparently function throughout the lifetime of the organ or the plant.  相似文献   

8.
Scanning electron microscopy (SEM) of tracheary elements of roots of five species from four genera of Marattiaceae and of the rhizome of one species revealed vessel elements present in all. The secondary wall framework of perforation plates is the same as that of lateral wall pitting for vessel elements in all species. Thus, no specialization is present in perforation plates of Marattiaceae compared to the simplified morphology of perforation plates of some leptosporangiate ferns (e.g., Dryopteridaceae, Polypodiaceae, and Pteridaceae). The difference between lateral wall pitting and perforation plates in tracheary elements of Marattiaceae cannot be seen by light microscopy (in which pit membranes are transparent), but is evident with SEM. Diversity in structure of perforation plates (especially the alternation of wide and narrow perforations within a plate) and presence of web-like pit membrane remnants are evident. Vessels are widespread in both leptosporangiate and eusporangiate ferns, although specialization in perforation plates (e.g., bars few and more widely spaced in lateral wall pitting of a given vessel element) is to be expected only in ferns of habitats with marked fluctuation in water availability. Vessels of Marattiaceae lack such specializations and are thus are correlated with the mesic habitats characteristic for the family.  相似文献   

9.
At maturity the sieve elements of Ulmus americana L. contain a parietal network of very fine strands of slime which is continuous from one sieve element to the next through the sieve-plate pores. Upon injury this parietal network, which is derived from the slime bodies of immature sieve elements, sometimes becomes distorted into longitudinally oriented strands. Some of these strands frequently extend the length of the cells and often are continuous from one sieve element to the next through the sieve-plate pores. At times past such strands have erroneously been interpreted as normal constituents of the mature sieve-element protoplast. Many mature sieve elements of U. americana contain nuclei, which apparently persist for the life of the sieve elements. In addition, some evidence has been found in mature sieve elements for the presence of a membrane which delimits the parietal layer of cytoplasm, including its network of slime strands, from the vacuolar region of the cell.  相似文献   

10.
The cytochemical localization of ATPase in differentiating and mature phloem cells of Pisum sativum L. has been studied using a lead precipitation technique. Phloem transfer cells at early stages of differentiation exhibit strong enzyme activity in the endoplasmic reticulum (ER) and some reaction product is deposited on the vacuolar and plasma membranes. As the phloem transfer cells mature and develop their characteristic wall structures, strong enzyme activity can be observed in association with the plasma membranes and nuclear envelopes. Mature phloem transfer cells with elaborate cell-wall ingrowths show ATPase activity evenly distributed on plasma-membrane surfaces. Differentiating sieve elements show little or no enzyme activity. When sieve elements are fully mature they have reaction product in the parietal and stacked cisternae of the ER. There is no ATPase activity associated with P-protein at any stage of sieve-element differentiation or with the sieve-element plasma membranes. It is suggested that the intensive ATPase activity on the plasma membranes of the transfer cells is evidence for a transport system involved in the active movement of photosynthetic products through these cells.Key to labeling in the figures ER endoplasmic reticulum - P parenchyma cell - PP P-protein - SE sieve element - SPP sieve-plate pore - TC transfer cell  相似文献   

11.
In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of co-dons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.  相似文献   

12.
Studies of the secondary phloem of 6 species of conifers revealed that mature sieve-cell protoplasts contain internal strands which are derived ontogenetically from slime bodies of immature cells. These strands, each measuring about 0.3 μ in diameter, traverse the cell and run from cell to cell through sieve-area pores. Coniferous sieve cells have much in common—both ontogenetically and structurally—with dicotyledonous sieve-tube members.  相似文献   

13.
In this brief review an attempt has been made to discuss some of the important features of the vascular anatomy of angiospermous leaves, especially those related to assimilate transport. Accordingly, emphasis has been placed on the small or minor veins, which are closely related spatially to the mesophyll, and which play a major role in the uptake and subsequent transport of photosynthates from the leaf. The small veins are enclosed by bundle sheaths that intervene between the mesophyll and vascular tissues and greatly increase the area for contact with mesophyll cells. In the minor veins of dicotyledonous leaves, parenchymatic cells having organelle-rich protoplasts and numerous cytoplasmic connections with sieve elements dominate quantitatively. It is these so-called intermediary cells that apparently are directly involved with the loading of assimilates into the sieve elements. In the maize leaf the small and intermediate bundles have two types of sieve tubes, relatively thin-walled ones that have numerous cytoplasmic connections with companion cells, and thick-walled ones that lack companion cells but have numerous connections with vascular parenchyma cells. The companion cell-sieve tube complexes are virtually isolated symplastically from other cells of the vascular bundle and from the bundle sheath. Thick-walled sieve tubes similar to those in the maize leaf have been recorded in the leaves of other grasses.  相似文献   

14.
Endoplasmic reticulum in the root protophloem of Nymphoides peltata (S.G. Gmel.) O. Kuntze changes form as sieve elements differentiate. In immature sieve elements the individual endoplasmic reticulum (ER) cisternae form large irregular aggregates in the cytoplasm. In older immature sieve elements the ER aggregates are more ordered and membranes in them are convoluted. Although convoluted ER predominates in immature sieve elements the ER of the mature sieve elements consists mainly of flattened stacks of ER cisternae. Some of these stacks of ER may be derived from the existing convoluted ER. Crystalline fibrils first appear in the cytoplasm of the sieve element when the ER starts to aggregate. The crystalline fibrils move to the parietal layer of the sieve element along with the aggregates of ER. A possible ontogenetic relationship between ER and crystalline fibrils is discussed.Abbreviation ER endoplasmic reticulum  相似文献   

15.
Karl J. Oparka 《Planta》1980,150(3):249-254
Polysomes in sieve elements of rice (Oryza sativa L.) were studied with the electron microscope. The polysomes were found on the rough endoplasmic reticulum (ER) present in immature sieve elements and also on the cisternae of aggregated ER in the parietal layer of mature, enucleate sieve elements. In the immature sieve elements the ER cisternae existed as narrow profiles while in the mature sieve elements the ER cisternae were considerably dilated and contained a fibrillar material and, occasionally, electron-opaque inclusions. In addition to the aggregated ER, single profiles of ER were found applied to the lateral walls and also the sieve plates. These cisternae also bore ribosomes and were separated from the plasmalemma by a narrow, dense space. In the mature sieve elements much of the surface of the ER membranes was covered with polysomes. The dimensions of the polysomes are described and the possibility that they contribute to the formation of the fibrillar material in the intracisternal space is discussed.Abbreviations ER endoplasmic reticulum  相似文献   

16.
Summer and winter (July and January) samples of secondary phloem of Tilia americana were studied with the electron microscope. Parenchyma cells contain: nuclei, endoplasmic reticulum, ribosomes, plastids, mitochondria and occasional dictyosomes. Well-defined tonoplasts separate vacuoles from cytoplasmic ground substance. Vacuoles often contain tannins. Lipid droplets are common in cytoplasm. Endoplasmic reticulum–connected plasmodesmata are aggregated in primary pit fields. Companion cells differ from parenchyma cells in having numerous sieve-element connections, possibly slime, and in lacking plastids. Mature, enucleate sieve elements possess 1–4 extruded nucleoli. Numerous vesicles occupy a mostly parietal position in association with plasmalemma. The mature sieve element lacks endoplasmic reticulum, organelles (except for few mitochondria) and tonoplast. In OsO4– and glutaraldehyde-fixed elements, slime has a fine, fibrillar appearance. Normally, these fine fibrils are organized into coarser ones which form strands that traverse the cell and the plasmalemma-lined pores of sieve plates and lateral sieve areas.  相似文献   

17.
Summary After chemical fixation following two different preparation procedures, the ultrastructure of mature sieve elements (SEs) was systematically compared in the transport phloem ofVicia faba leaves andLycopersicon esculentum internodes. The SEs in samples obtained by gentle preparation were well preserved, while those in conventionally prepared samples were generally injured. (1) In well-preserved SEs, parietal P-proteins were associated with cisternae of the SE endoplasmic reticulum (ER). Additionally, theV. faba SEs had crystalline P-proteins, and a homogeneous network of filamentous P-proteins occurred in the lumen of theL. esculentum SEs. In injured SEs, all P-proteins were dispersed. (2) In well-preserved SEs, stacked ER cisternae associated with P-proteins lay also on the sieve-plate walls, but passages were kept free in front of the sieve pores. Injured SEs lacked these orderly arranged deposits. Instead, irregular filamentous and membranous materials occluded the sieve pores. (3) In well-preserved SEs, the sieve-pore lumen was free of obstructions, apart from small, lateral coatings of P-proteins. Sieve pores in injured SEs were always occluded. (4) The SE organelles and, in tomato SEs, also the parietal ER located at the longitudinal walls were firmly attached in the SE periphery and stayed in place after injury. The stable parietal attachment is likely exerted by minute, clamplike structures which link the outer membranes of the SE components with one another or to the SE plasma membrane. Single, straight clamps with a length of about 7 nm anchored the SE components directly to the SE plasma membrane. The connections between adjacent SE organelles and/or parietal ER cisternae were mostly twice as long (about 15 nm) and often were branched. Presumably, the long, branched clamps were constituted by the interaction of opposite short clamps. The ultrastructural results are discussed with respect to SE functioning.  相似文献   

18.
Corm tissue of Isoetes muricata Dur. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Very young secondary sieve elements can be distinguished from contiguous cambial cells by their distinctive plastids and by the presence of crystalline and/or fibrillar proteinaceous material in dilated cisternae of rough endoplasmic reticulum (ER). At maturity, the sieve elements are lined by the plasmalemma and a parietal, anastomosing network of smooth ER. Degenerate nuclei persist in all mature sieve elements. In addition, mature sieve elments contain plastids and mitochondria. Sieve-area pores are present in all walls. The lateral meristem of I. muricata consists of 2–3 layers of cells year-round. Judging from numerous collections made between October 1972 and July 1975, new sieve-element differentiation precedes cambial activity by about a month. Early in May, 1–2 cells immediately adjacent to already mature sieve elements differentiate directly into sieve elements without prior division. In early June, at about the time sieve-element differentiation is completed, cambial division begins. Division is sporadic, not uniform throughout the meristem. Dormancy callose accumulates in the secondary sieve elements in late October, and is removed in early May, at about the same time new sieve-element differentiation begins. Cells of the dormant cambium are characterized by the presence of numerous small vacuoles and large quantities of storage materials, including lipid droplets, starch grains, and tannin. By contrast, active cambial cells contain few large vacuoles with little or no tannin, and they have little storage material.  相似文献   

19.
A survey of the flavonoids of four species of Angiopteris indicates that di-C-glycosylflavones and flavone-O-glycosides may be characteristic of this distinct group of eusporangiate ferns. Derivatives of flavonols, which are typical of leptosporangiate ferns and Ophioglossum, or biflavones, which are characteristic of the Psilotaceae, were not detected in Angiopteris.  相似文献   

20.
Summary Internodal metaphloem sieve elements located near the nodes of aerial stems ofEquisetum hyemale contain very oblique end walls. During maturation, the connections, or plasmodesmata, in these walls undergo little or no structural modification. By contrast, the endwall connections uniting the protoplasts of mature sieve elements elsewhere in the aerial stem ofE. hyemale are pores.This work as supported by U.S. National Science Foundation grant GB 31417 to R. F.Evert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号