首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Structural plasticity at crustacean neuromuscular synapses   总被引:1,自引:0,他引:1  
Crustacean motor axons innervate muscle fibers via a multiplicity of synaptic terminals which release small but variable amounts of transmitter. Differences in release performance appear to be correlated with the size of synaptic contacts and presynaptic dense bars (active zones). These structural parameters proliferate via sprouting from existing synaptic terminals and relocate to ever more distal sites during development and growth of an identified axon. Moreover, alterations in number of synaptic contacts and active zones occur in adults following stimulation or decentralization, demonstrating structural plasticity of crustacean neuromuscular synapses.  相似文献   

3.
4.
5.
Voltage clamp studies of the post-synaptic membrane of the locust neuromuscular junction have shown that the transmitter substance and L-glutamate cause an approximately equal increase in permeability to sodium and potassium. The changes in reversal potential caused by altering external potassium, but not external sodium, were similar to those predicted by the Goldman equation. The ionic channels of the glutamate receptor had a high permeability to a variety of inorganic and organic cations, indicating relatively non-selective channels of size approximately 0.6 x 0.4 nm.  相似文献   

6.
Abstract.  Drosophila larval muscles are commonly used for developmental assessment in regard to various mutations of synaptically relevant molecules. In addition, the molecular sequence of the glutamate receptors on the muscle fibre have been described; however, the pharmacological profiles to known agonists and antagonists have yet to be reported. Here, the responses of N -methyl- d -aspartic acid, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), l -glutamate, kainate, quisqualic acid, NBQX, AP5 and DNQX are characterized with regard to synaptic transmission and direct effects on the muscle fibres. The muscle fibres depolarize to application of glutamate or quisqualate and the excitatory postsynaptic potential (EPSP) amplitudes are diminished. Kainate does not alter the muscle membrane potential but does reduce the EPSP amplitude. The known antagonists NBQX, AP5 and DNQX have no substantial effect on synaptic transmission at 1 m m , nor do they block the response of quisqualate. Kainate may be acting as a postsynaptic antagonist or via autoreceptors presynaptically to reduce evoked transmission.  相似文献   

7.
The Akt family of serine‐threonine kinases integrates a myriad of signals governing cell proliferation, apoptosis, glucose metabolism, and cytoskeletal organization. Akt affects neuronal morphology and function, influencing dendrite growth and the expression of ion channels. Akt is also an integral element of PI3Kinase‐target of rapamycin (TOR)‐Rheb signaling, a pathway that affects synapse assembly in both vertebrates and Drosophila. Our recent findings demonstrated that disruption of this pathway in Drosophila is responsible for a number of neurodevelopmental deficits that may also affect phenotypes associated with tuberous sclerosis complex, a disorder resulting from mutations compromising the TSC1/TSC2 complex, an inhibitor of TOR (Dimitroff et al., 2012). Therefore, we examined the role of Akt in the assembly and physiological function of the Drosophila neuromuscular junction (NMJ), a glutamatergic synapse that displays developmental and activity‐dependent plasticity. The single Drosophila Akt family member, Akt1 selectively altered the postsynaptic targeting of one glutamate receptor subunit, GluRIIA, and was required for the expansion of a specialized postsynaptic membrane compartment, the subsynaptic reticulum (SSR). Several lines of evidence indicated that Akt1 influences SSR assembly by regulation of Gtaxin, a Drosophila t‐SNARE protein (Gorczyca et al., 2007) in a manner independent of the mislocalization of GluRIIA. Our findings show that Akt1 governs two critical elements of synapse development, neurotransmitter receptor localization, and postsynaptic membrane elaboration. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 73: 723–743, 2013  相似文献   

8.
L-glutamate is the major excitatory neurotransmitter in the mammalian brain. Specific proteins, the Na+/K+-dependent high affinity excitatory amino acid transporters (EAATs), are involved in the extracellular clearance and recycling of this amino acid. Type I synapses of the Drosophila neuromuscular junction (NMJ) similarly use L-glutamate as an excitatory transmitter. However, the localization and function of the only high-affinity glutamate reuptake transporter in Drosophila, dEAAT1, at the NMJ was unknown. Using a specific antibody and transgenic strains, we observed that dEAAT1 is present at the adult, but surprisingly not at embryonic and larval NMJ, suggesting a physiological maturation of the junction during metamorphosis. We found that dEAAT1 is not localized in motor neurons but in glial extensions that closely follow motor axons to the adult NMJ. Inactivation of the dEAAT1 gene by RNA interference generated viable adult flies that were able to walk but were flight-defective. Electrophysiological recordings of the thoracic dorso-lateral NMJ were performed in adult dEAAT1-deficient flies. The lack of dEAAT1 prolonged the duration of the individual responses to motor nerve stimulation and this effect was progressively increased during physiological trains of stimulations. Therefore, glutamate reuptake by glial cells is required to ensure normal activity of the Drosophila NMJ, but only in adult flies.  相似文献   

9.
10.
The effects of L-glutamate and acetylcholine on the ventral muscle fibres of the larval mealworm Tenebrio molitor were studied by means of microelectrodes. Bath application of L-glutamate at concentrations higher than 1 × 10 4M suppressed excitatory postsynaptic potentials (EPSPs) and evoked both a depolarisation and a reduction in the input resistance of the muscle fibre. In contrast, acetylcholine chloride (up to 1 mM) had no effect at all. Circumscribed spots could be detected on the fibre surface where iontophoretic applications of L-glutamate caused transient depolarizations (glutamate potentials). Focal extracellular recordings revealed that the glutamate sensitive spots were identical with synaptic sites. The reversal potentials of the EPSP and the L-glutamate potential were identical. These results are compatible with the hypothesis that L-glutamate is an excitatory transmitter at the neuromuscular junction.  相似文献   

11.
12.
N-CAM at the vertebrate neuromuscular junction   总被引:27,自引:22,他引:5  
We have detected the neural cell adhesion molecule, N-CAM, at nerve-muscle contacts in the developing and adult mouse diaphragm. Whereas we found N-CAM staining with fluorescent antibodies consistently to overlap with the pattern of alpha-bungarotoxin staining at nerve-muscle contacts both during development and in the adult, we observed N-CAM staining on the surfaces of developing myofibers and at much lower levels on adult myofibers. Consistent with its function, N-CAM was also detected on axons and axon terminals. Immunoblotting experiments with anti-N-CAM antibodies on detergent extracts of embryonic (E) diaphragm muscle revealed a polydisperse polysialylated N-CAM polypeptide, which in the adult (A) was converted to a discrete form of Mr 140,000; this change, called E-to-A conversion, was previously found to occur in different neural tissues at different rates. The Mr 140,000 component was not recognized by monoclonal antibody anti-N-CAM No. 5, which specifically recognizes antigenic determinants associated with N-linked oligosaccharide determinants on N-CAM from neural tissue. The relative concentration of the Mr 140,000 component prepared from diaphragm muscle increased during fetal development and then decreased sharply to reach adult values. Nevertheless, expression of N-CAM in muscle could be induced after denervation: one week after the sciatic nerve was severed, the relative amount of N-CAM increased dramatically as detected by immunoblots of extracts of whole muscle. Immunofluorescent staining confirmed that there was an increase in N-CAM, both in the cell and at the cell surface; at the same time, however, staining at the motor endplate was diminished. Our findings indicate that, in muscle, in addition to chemical modulation, cell-surface modulation of N-CAM occurs both in amount and distribution during embryogenesis and in response to denervation.  相似文献   

13.
14.
15.
F A Wali 《Life sciences》1985,37(17):1559-1561
Diazepam (Valieum, Roche) is a centrally-acting drug belonging to the benzodiazepine group of tranquillisers with anxiolytic, hypnotic, anti-convulsant and myorelaxant properties (1). It has been reported that in addition to its central effects (1), diazepam also produces relaxation of the skeletal muscle (2, 3). The myorelaxation produced by diazepam is thought to be of central origin (2), although at least some of the effects is due to a peripheral effect of diazepam, i.e. at the neuromuscular junction.Although the effects and interactions of diazepam with neuromuscular blocking agents have been studied by many workers (2–12), the results reported are somehow are controversial (4–8). In sum, diazepam can either enhance or depress neuromuscular transmission, the effect being dependent on the concentration and the type of the preparation used. A multi-site of action of diazepam may provide an explanation for some of the anomalies reported in the literature.  相似文献   

16.
《Journal of Physiology》1998,92(3-4):153-155
Synapses obtained in vitro in a system of co-culture of muscle cells and neurons are of embryonic type. We prepared a monoclonal antibody (6.17) which recognizes a molecule synthesized by Schwann cells and used it to show that the main characteristics of maturity (decrase in number of synapses, appearance of junctional folds, and suppression of butyrylcholinesterase expression) are under the control of Schwann cells. In addition, Schwann cells have the capacity to aggregate the acetylcholine receptors in myotube cultures.  相似文献   

17.
18.
Changes in the effective membrane resistance of the abductor muscle of the dactylopodite of the crayfish were used to indicate changes in the GABA concentration in the synaptic cleft. Following bath application of GABA (10?5 to 5 × 10?5M), the muscle membrane resistance decreased and then increased slowly over the next few minutes. Renewing the solution or stirring the bath restored the GABA effect. Higher GABA concentrations produced a large stable decrease in membrane resistance. An active uptake system for GABA in the junctional region is suggested by the observation that the slow increase in membrane resistance following GABA application was decreased by cooling to 2°C or by the addition of known GABA uptake blockers such as L -DABA, β-guanidinopropionic acid, or nipecotic acid. The transport inhibitors, PCMBS and chlorpromazine, produced irreversible decreases in muscle membrane resistance, which precluded examining their effects on GABA inactivation. The decrease in GABA effect was not dependent on the external sodium concentration or on the degree of receptor activation. Nipecotic acid, which blocked GABA inactivation, did not affect the decay of the neurally evoked inhibitory junctional potential.  相似文献   

19.
In this review we present recent evidence implicating second-messenger systems in two forms of long-lasting synaptic change seen at crustacean neuromuscular junctions. Crustacean motor axons are endowed with numerous terminals, each possessing many individual synapses. Some synapses appear to be quiescent or impotent, but can be recruited in response to imposed functional demands. Supernormal impulse activity leads to long-term facilitation (LTF) which persists for many hours. During the persistent phase, additional synapses are physiologically effective, and morphological changes in synapses are seen at the ultrastructural level. Pulsatile application of serotonin, a neuromodulator, also enhances synaptic transmission, but this enhancement declines more rapidly than LTF. Elevation of intraterminal Ca2+ is neither necessary nor sufficient for long-lasting enhancement of transmission, but activation of A-kinase is necessary. LTF is set in motion by an unknown depolarization-dependent mechanism leading to A-kinase activation, whereas serotonin facilitation depends for its initiation on the phosphatidylinositol system. The initial phase of serotonin facilitation may be accounted for by production of inositol triphosphate, whereas the secondary long-lasting phase appears to require participation of both C kinase and A kinase. Neither LTF nor serotonin facilitation requires an intact neuron; both are presynaptic phenomena expressed by the nerve terminals. Brief comparison is made with long-lasting synaptic changes in other systems.  相似文献   

20.
The closer muscle of the crab, Chionoecetes, has at least two classes of excitatory neuromuscular synapses. In one class of synapses an action potential depolarizing the synaptic region releases much more transmitter if it has been preceded recently by another action potential. The other class of synapses shows this property, called facilitation, to a far lesser extent. Immediately after one conditioning stimulus the level of facilitation is similar in both classes. The rate of the ensuing decay of the facilitation is the critical factor differentiating the two classes of synapses. The relationship between external Ca++ concentration and transmitter release is similar for both classes of synapses. The slope of a double logarithmic plot of this relationship varies from 3.1 between 5 and 10 mM Ca++ to 0.9 between 30 and 40 mM Ca++. Facilitation does not significantly change when tested in external Ca++ concentrations ranging from 7 to 30 mM. The extracellularly recorded nerve terminal action potential does not increase in amplitude during facilitation. The results suggest that the mechanism of synaptic facilitation is similar for both classes of synapses and occurs after the stage in transmitter release involving Ca++.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号