首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Riboflavine uptake and membrane-associated riboflavin-binding activity has been investigated in Bacillus subtilis. Riboflavin uptake proceeds via a system whose general properties are indicative of a carrier-mediated process: it is inhibited by substrate analogues, exhibits saturation kinetics, and is temperature-dependent. The organism concentrates riboflavin primarily as the phosphorylated cofactors FMN and FAD. Energy is required for uptake but whether the energy demand is required for both uptake and phosphorylation or only for the phosphorylation step is not known. Membrane-associated binding activity for riboflavin has also been demonstrated in membrane vesicles prepared from B. subtilis, and the binding component can be "solubilized" with Triton X-100. Evidence supporting the function of the binding component in riboflavin uptake by the intact cells includes the following. (i) Riboflavin analogues inhibit binding and uptake to nearly the same extent and with similar specificity of action. (ii) The KD for riboflavin-binding and the Km for uptake are in the same range. Similarly the Ki determined for the inhibitory analogue 5-deazariboflavin in the uptake assay and the KD for its interaction with the riboflavin-binding component of membrane vesicles are in the same range. (iii) Uptake in cells and binding in vesicles vary in the same direction with differences in growth conditions.  相似文献   

2.
A competitive binding procedure that can be used to determine either riboflavin or riboflavin-binding protein has been developed. Riboflavin-binding protein from chicken egg white binds tightly to DEAE-cellulose while free riboflavin does not. Stock [2-14C]riboflavin solutions, diluted with varying amounts of a standard unlabeled riboflavin solution or an unknown sample, are mixed with aporiboflavin-binding protein and washed through small DEAE-cellulose columns. The protein-bound riboflavin is batch eluted into scintillation vials, counted, and the unknown samples compared to a standard curve. This is a simple, rapid method for assaying riboflavin by isotope dilution. By a slight modification of the incubation conditions of this procedure, the degree of saturation and amount of riboflavin-binding protein can be determined. Data from both assays can be represented by linear plots in which slopes or intercepts correspond to unknown values. The principles presented here have been extended to the assay of biotin and avidin and should apply to other vitamins and vitamin-binding proteins.  相似文献   

3.
A new solid-phase enzyme-linked assay for riboflavin (vitamin B2) is described. The assay is based on the competition between analyte vitamin molecules and a glucose-6-phosphate dehydrogenase-3-carboxymethylriboflavin conjugate for a limited number of riboflavin-binding protein sites immobilized on Sepharose particles. Significant improvements in conjugate catalytic activity and thus detectability are achieved by optimizing the reaction conditions used to covalently link 3-carboxymethylriboflavin to the enzyme. Optimization experiments include studying the effects of reaction pH and organic solvent composition. Final assay detection limits and the sensitivity of the dose-response curves are dependent on the ratio of conjugate to binding protein sites utilized in an equilibrium assay protocol. Selectivity of the method correlates well with that predicted based on the known association constants of riboflavin-binding protein with flavin analogs. The assay is shown to offer adequate detection limits and selectivity for direct measurement of riboflavin in urine, infant formula, and vitamin capsules.  相似文献   

4.
Crystal structure of chicken riboflavin-binding protein.   总被引:2,自引:0,他引:2  
H L Monaco 《The EMBO journal》1997,16(7):1475-1483
The crystal structure of chicken egg white riboflavin-binding protein, determined to a resolution of 2.5 A, is the prototype of a family that includes other riboflavin- and folate-binding proteins. An unusual characteristic of these molecules is their high degree of cross-linking by disulfide bridges and, in the case of the avian proteins, the presence of stretches of highly phosphorylated polypeptide chain. The structure of chicken egg white riboflavin-binding protein is characterized by a ligand-binding domain and a phosphorylated motif. The ligand-binding domain has a fold that appears to be strongly conditioned by the presence of the disulfide bridges. The phosphorylated motif, essential for vitamin uptake, is made up of two helices found before and after the flexible phosphorylated region. The riboflavin molecule binds to the protein with the isoalloxazine ring stacked in between the rings of Tyr75 and Trp156. This geometry and the proximity of other tryptophans explain the fluorescent quenching observed when riboflavin binds to the protein.  相似文献   

5.
The first biochemical and spectroscopic characterization of a purified membrane transporter for riboflavin (vitamin B(2)) is presented. The riboflavin transporter RibU from the bacterium Lactococcus lactis was overexpressed, solubilized, and purified. The purified transporter was bright yellow when the cells had been cultured in rich medium. We used a detergent-compatible matrix-assisted laser desorption ionization time-of-flight mass spectrometry method (Cadene, M., and Chait, B. T. (2000) Anal. Chem. 72, 5655-5658) to show that the source of the yellow color was riboflavin that had been co-purified with the transporter. The method appears generally applicable for substrate identification of purified membrane proteins. Substrate-free RibU was produced by expressing the protein in cells cultured in chemically defined medium. Riboflavin, FMN, and roseoflavin bound to RibU with high affinity and 1:1 stoichiometry (K(d) for riboflavin is 0.6 nM), but FAD did not bind to the transporter. The absorption spectrum of riboflavin changed dramatically when the substrate bound to RibU. Well resolved bands appeared at 441, 464, and 486 nm, indicating a hydrophobic binding pocket. The fluorescence of riboflavin was almost completely quenched upon binding to RibU, and also the tryptophan fluorescence of the transporter was quenched when flavins bound. The results indicate that riboflavin is stacked with one or more tryptophan residues in the binding pocket of RibU. Mutagenesis experiments showed that Trp-68 was involved directly in the riboflavin binding. The structural properties of the binding site and mechanistic consequences of the exceptionally high affinity of RibU for its substrate are discussed in relation to soluble riboflavin-binding proteins of known structure.  相似文献   

6.
1. Dissociation of riboflavin from flavoprotein and from the flavoprotein-antibody complex occurs under the same conditions. 2. The precipitated apoprotein-antibody complex retains 15% of the apoprotein capacity to bind riboflavin. After solubilization of the complex in 0.3 M-KCl or 1 M-urea, the binding of riboflavin amounts to 80 - 90% of its capacity. 3. The apoprotein modified by oxidation of 50% of tryptophan residues loses the ability to bind riboflavin but its immunological reactivity with the anti-flavoprotein antibody is similar to that of native apoprotein. The apoprotein with all tryptophan residues oxidized shows much lower immunoreactivity. 4. The obtained results suggest that in riboflavin flavoprotein the region around the riboflavin-binding site does not show the properties of an antigenic determinant.  相似文献   

7.
The ion-pumping NQR complex is an essential respiratory enzyme in the physiology of many pathogenic bacteria. This enzyme transfers electrons from NADH to ubiquinone through several cofactors, including riboflavin (vitamin B2). NQR is the only enzyme reported that is able to use riboflavin as a cofactor. Moreover, the riboflavin molecule is found as a stable neutral semiquinone radical. The otherwise highly reactive unpaired electron is stabilized via an unknown mechanism. Crystallographic data suggested that riboflavin might be found in a superficially located site in the interface of NQR subunits B and E. However, this location is highly problematic, as the site does not have the expected physiochemical properties. In this work, we have located the riboflavin-binding site in an amphipathic pocket in subunit B, previously proposed to be the entry site of sodium. Here, we show that this site contains absolutely conserved residues, including N200, N203, and D346. Mutations of these residues decrease enzymatic activity and specifically block the ability of NQR to bind riboflavin. Docking analysis and molecular dynamics simulations indicate that these residues participate directly in riboflavin binding, establishing hydrogen bonds that stabilize the cofactor in the site. We conclude that riboflavin is likely bound in the proposed pocket, which is consistent with enzymatic characterizations, thermodynamic studies, and distance between cofactors.  相似文献   

8.
The unfolding and refolding of riboflavin-binding protein (RfBP) from hen egg-white induced by addition of guanidinium chloride (GdnHCl), and its subsequent removal by dialysis have been studied by c.d. and fluorescence for both the native and reduced protein. The reduction of its nine disulphide bonds causes a reduction in the secondary structure (alpha-helix plus beta-sheet) from 63% to 33% of the amino acid residues. Unfolding of the native protein occurred in two phases; the first involving a substantial loss of tertiary structure, followed by a second phase involving loss of secondary structure at higher GdnHCl concentrations. By contrast this biphasic behaviour was not discernible in the reduced protein. The loss of ability to bind riboflavin occurred after the first phase of unfolding. Comparison of unfolding of the holoprotein and apoprotein suggested that riboflavin has only a small stabilizing effect on the unfolding process. After removal of GdnHCl, the holoprotein, apoprotein and reduced protein assumed their original conformation. The significance of the results in relation to various models for protein folding is discussed.  相似文献   

9.
Riboflavin binding by plasma proteins from healthy human subjects was examined by equilibrium dialysis using a physiological concentration of [2-14C]riboflavin (0.04 microM). Binding ranged from 0.080 to 0.917 pmole of riboflavin/mg of protein (with a mean +/- SD of 0.274 +/- 0.206), which corresponded to 4.14 to 49.4 pmole/ml of plasma (15.5 +/- 11.0) (N = 34). Males and females yielded similar results. Upon fractionation of plasma by gel filtration, the major riboflavin-binding components eluted with albumin and gamma-globulins. Albumin was purified and found to bind riboflavin only very weakly (Kd = 3.8 to 10.4 mM), although FMN and photochemical degradation products (e.g., lumiflavine and lumichrome) were more tightly bound. Binding in the gamma-globulin fraction was attributed to IgG and IGA because the binding protein(s) and immunoglobulins copurified using various methods were removed by treatment of plasma with protein A-agarose, and were coincident upon immunoelectrophoresis followed by autoradiography to detect [2-14C]riboflavin. Differences among the plasma samples correlated with the binding recovered with the immunoglobulins. Binding was not directly related to the total IgG or IgA levels of subjects. Hence, it appears that the binding is due to a subfraction of these proteins. These findings suggest that riboflavin-binding immunoglobulins are a major cause of variations in riboflavin binding in human circulation, and may therefore affect the utilization of this micronutrient.  相似文献   

10.
1. Reaction of 1,2-cyclohexanedione with arginine residues of egg white riboflavin-binding protein results in a loss of the binding activity. 2. In borate buffer pH 8.0, with 0.15 M cyclohexanedione, the inactivation proceeds with a pseudo-first-order rate constant 0.084 hr.-1. 3. At least 65% of lost riboflavin binding capacity can be recovered on 12 hr incubation in 0.5 M hydroxylamine pH 7.0. 4. All 5 arginine residues are modified, 2-3 of them seem to react much easier than others. 5. The correlation between modification of arginines and protein inactivation, as analyzed by kinetic and statistical methods, suggests that one of low-reactivity residues is "essential" for riboflavin binding. 6. In the holoprotein, one arginine residue is almost completely protected from 1,2-cyclohexanedione modification. 7. Riboflavin does not dissociate from holoprotein, even on prolongated incubation with the reagent. 8. The protected arginine residue seems to be located in the riboflavin binding pocket of protein macromolecule.  相似文献   

11.
Riboflavin-binding proteins have been purified from bovine plasma using flavinyl agarose beads. At least three major protein bands, migrating in regions assigned to the beta- and gamma-globulins of plasma, are observed by cellulose acetate electrophoresis. These proteins coelute from a calibrated Sephadex G-100 column in the volume corresponding to a molecular weight of approximately 150,000; a small amount of another riboflavin-binding protein (molecular weight approximately 37,000) is also present. Polyacrylamide gel electrophoresis of the proteins, with detection by autoradiography of those having tightly bound [2-14C]riboflavin, reveals one protein band which is present only in preparations from pregnant cows. This protein has been purified to apparent homogeneity by storing the mixture of riboflavin-binding proteins at 8 degrees C for 3 weeks, which precipitates the other, less stable proteins. Hence, bovine plasma, like that of the laying hen, contains a number of riboflavin-binding proteins, one of which correlates with pregnancy.  相似文献   

12.
A major integral protein of the plant plasma membrane binds flavin   总被引:1,自引:0,他引:1  
Lorenz A  Kaldenhoff R  Hertel R 《Protoplasma》2003,221(1-2):19-30
Abundant flavin binding sites have been found in membranes of plants and fungi. With flavin mononucleotide-agarose affinity columns, riboflavin-binding activity from microsomes of Cucurbita pepoL. hypocotyls was purified and identified as a specific PIP1-homologous protein of the aquaporin family. Sequences such as gi|2149955 in Phaseolus vulgaris, PIP1b of Arabidopsis thaliana, and NtAQP1 of tobacco are closely related. The identification as a riboflavin-binding protein was confirmed by binding tests with an extract of Escherichia coli cells expressing the tobacco NtAQP1 as well as leaves of transgenic tobacco plants that overexpress NtAQP1 or were inhibited in PIP1 expression by antisense constructs. When binding was assayed in the presence of dithionite, the reduced flavin formed a relatively stable association with the protein. Upon dilution under oxidizing conditions, the adduct was resolved, and free flavin reappeared with a half time of about 30 min. Such an association can also be induced photochemically, with oxidized flavin by blue light at 450 nm, in the presence of an electron donor. Several criteria, localization in the plasma membrane, high abundance, affinity to roseoflavin, and photochemistry, argue for a role of the riboflavin-binding protein PIP1 as a photoreceptor.  相似文献   

13.
Riboflavin (vitamin B(2)) is the direct precursor of the flavin cofactors flavin mononucleotide and flavin adenine dinucleotide, essential components of cellular biochemistry. In this work we investigated the unrelated proteins YpaA from Bacillus subtilis and PnuX from Corynebacterium glutamicum for a role in riboflavin uptake. Based on the regulation of the corresponding genes by a riboswitch mechanism, both proteins have been predicted to be involved in flavin metabolism. Moreover, their primary structures suggested that these proteins integrate into the cytoplasmic membrane. We provide experimental evidence that YpaA is a plasma membrane protein with five transmembrane domains and a cytoplasmic C terminus. In B. subtilis, riboflavin uptake was increased when ypaA was overexpressed and abolished when ypaA was deleted. Riboflavin uptake activity and the abundance of the YpaA protein were also increased when riboflavin auxotrophic mutants were grown in limiting amounts of riboflavin. YpaA-mediated riboflavin uptake was sensitive to protonophors and reduced in the absence of glucose, demonstrating that the protein requires metabolic energy for substrate translocation. In addition, we demonstrate that PnuX from C. glutamicum also is a riboflavin transporter. Transport by PnuX was not energy dependent and had high apparent affinity for riboflavin (K(m) 11 microM). Roseoflavin, a toxic riboflavin analog, appears to be a substrate of PnuX and YpaA. We propose to designate the gene names ribU for ypaA and ribM for pnuX to reflect that the encoded proteins function in riboflavin uptake and that the genes have different phylogenetic origins.  相似文献   

14.
Riboflavin mediates many bioprocesses associated with the generation of hydrogen peroxide (H?O?), a cellular signal that regulates defense responses in plants. Although plants can synthesize riboflavin, the levels vary widely in different organs and during different stages of development, indicating that changes in riboflavin levels may have physiological effects. Here, we show that changing riboflavin content affects H?O? accumulation and a pathogen defense in Arabidopsis thaliana. Leaf content of free riboflavin was modulated by ectopic expression of the turtle gene encoding riboflavin-binding protein (RfBP). The RfBP-expressing Arabidopsis thaliana (REAT) plants produced the RfBP protein that possessed riboflavin-binding activity. Compared with the wild-type plant, several tested REAT lines had >70% less flavins of free form. This change accompanied an elevation in the level of H?O? and an enhancement of plant resistance to a bacterial pathogen. All the observed REAT characters were eliminated due to RfBP silencing (RfBPi) under REAT background. When an H?O? scavenger was applied, H?O? level declined in all the plants, and REAT no longer exhibited the phenotype of resistance enhancement. However, treatment with an NADPH oxidase inhibitor diminished H?O? content and pathogen defense in wild-type and RfBPi but not in REAT. Our results suggest that the intrinsic down-regulation of free flavins is responsible for NADPH oxidase-independent H?O? accumulation and the pathogen defense.  相似文献   

15.
Binding and transport of thiamine by Lactobacillus casei.   总被引:2,自引:2,他引:0       下载免费PDF全文
The relationship between thiamine transport and a membrane-associated thiamine-binding activity has been investigated in Lactobacillus casei. Thiamine transport proceeds via a system whose general properties are typical of active uptake processes; entry of the vitamin into the cells requires energy, is temperature dependent, exhibits saturation kinetics, and is inhibited by substrate analogs. A considerable concentration gradient of unchanged thiamine can be achieved by the system, although the vitamin is slowly metabolized to thiamine pyrophosphate. Consistent with these results, L. casei also contains a high-affinity, thiamine-binding component which could be measured by incubation of intact cells with labeled substrate at 4 degrees C (conditions under which transport is negligible). Binding was insensitive to iodoacetate, occurred at a level (0.5 nmol per 10(10) cells) nearly 20-fold higher than could be accounted for by facilitated diffusion, and was found to reside in a component of the cell membrane. Participation of this binder in thiamine transport is supported by the observations that the processes of binding and transport showed similarities in their (i) regulation by the concentration of thiamine in the growth medium, (ii) binding affinities for thiamine, and (iii) susceptibility to inhibition by thiamine analogs.  相似文献   

16.
V Massey  S Ghisla  K Yagi 《Biochemistry》1986,25(24):8103-8112
6-Thiocyanatoflavins have been found to be susceptible to nucleophilic displacement reactions with sulfite and thiols, yielding respectively the 6-S-SO3--flavin and 6-mercaptoflavin, with rate constants at pH 7.0, 20 degrees C, of 55 M-1 min-1 for sulfite and 1000 M-1 min-1 for dithiothreitol. The 6-SCN-flavin binds tightly to riboflavin-binding protein as the riboflavin derivative, to apoflavodoxin, apo-lactate oxidase, and apo-Old Yellow Enzyme as the FMN derivative, and to apo-D-amino acid oxidase as the FAD derivative. The riboflavin-binding protein derivative is inaccessible to dithiothreitol attack, and the lactate oxidase and D-amino acid oxidase derivatives show only limited accessibility. However, the flavodoxin and Old Yellow Enzyme derivatives react readily with dithiothreitol, indicating that the flavin 6-position is exposed to solvent in these proteins. The lactate oxidase and D-amino acid oxidase derivatives convert slowly but spontaneously to the 6-mercaptoflavin enzyme forms in the absence of any added thiol, indicating the presence of a thiol residue in the flavin binding site of these proteins. The reaction rates have been investigated of 6-mercaptoflavins with iodoacetamide, N-ethylmaleimide, methyl methanethiosulfonate, H2O2, and m-chloroperbenzoate, in both the free and protein-bound state. The results confirm the conclusions drawn from the studies with 6-SCN-flavins described above and from 6-N3-flavins [Massey, V., Ghisla, S., & Yagi, K. (1986) Biochemistry (preceding paper in this issue)]. The spectral properties of the protein-bound 6-mercaptoflavin vary widely among the five proteins studied and show stabilization of the neutral flavin with flavodoxin and riboflavin-binding protein and of the anionic species by Old Yellow Enzyme, lactate oxidase, and D-amino acid oxidase. In the case of the latter two enzymes, the stabilization appears to be due to interaction of the negatively charged flavin with a positively charged protein residue located near the flavin pyrimidine ring. This positively charged residue appears to be responsible also for the strong stabilization of the two-electron oxidation state of the mercaptoflavin as the 6-S-oxide. With the other flavoproteins studied this oxidation level is stabilized as the 6-sulfenic acid or 6-sulfenate.  相似文献   

17.
Riboflavin synthase of Escherichia coli is a homotrimer with a molecular mass of 70 kDa. The enzyme catalyzes the dismutation of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine, affording riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. The N-terminal segment (residues 1-87) and the C-terminal segment (residues 98-187) form beta-barrels with similar fold and a high degree of sequence similarity. A recombinant peptide comprising amino acid residues 1-97 forms a dimer, which binds riboflavin with high affinity. Here, we report the structure of this construct in complex with riboflavin at 2.6A resolution. It is demonstrated that the complex can serve as a model for ligand-binding in the native enzyme. The structure and riboflavin-binding mode is in excellent agreement with structural information obtained from the native enzyme from Escherichia coli and riboflavin synthase from Schizosaccharomyces pombe. The implications for the binding specificity and the regiospecificity of the catalyzed reaction are discussed.  相似文献   

18.
Fas ligand induces apoptosis by binding to its receptor Fas. This process has been shown to be important for activation-induced cell death of T lymphocytes, homeostasis of T cell numbers, cytotoxicity, and the maintenance of immunological privilege. Fas ligand is a type II membrane protein that is cleaved by a metalloproteinase to produce an active, soluble molecule. It has been found that a variety of target cells are differentially sensitive to soluble and membrane-associated forms of Fas ligand. However, the explanation for this differential activity has not been determined. One proposed explanation for this differential activity is that membrane-associated Fas ligand is more efficiently aggregated than soluble Fas ligand. Another possibility that we have investigated is that accessory molecules may act to enhance the activity of cellular Fas ligand. We have transfected cells to express membrane-associated Fas ligand and have characterized clones of these transfected cells in terms of Fas ligand and ICAM-1 surface expression. Enhanced activity was associated with enhanced levels of both Fas ligand and ICAM-1. Moreover, inhibition of ICAM-1 modulated the activity of membrane-associated Fas ligand so that its cellular specificity was similar to that of soluble Fas ligand. Thus, ICAM-1 plays a significant role in regulating Fas ligand activity, and this role explains, at least in part, the different functional attributes of the soluble versus the cell-associated molecule.  相似文献   

19.
Abstract: Riboflavin-binding proteins could be the photorecep-tors for tropism in the fungus Phycomyces blakesleeanus . Radio-labelled riboflavin bound to both membrane-associated and cy-tosolic sites. The membrane sites (approximately 0.2–0.6nmol per g fresh material) were highly specific, with decreasing affinities for riboflavin (KD≅ 1 μM under reducing conditions, KD≅μM under oxidizing conditions), FMN, roseoflavin, and FAD. These binding sites, whose properties were similar to those of higher plants, could be solubilized with mild detergents, and were found in all vegetative parts of the fungus, including the spores. Mutants defective for phototropism did not differ from the wild type in the amount of binding sites or their affinity. A completely different binding to riboflavin was observed in the cytosolic supernatant of the sporangiophores; this activity was heat resistant and the binding sites could be partially purified and recognized as a polymerization product of gallic acid. Flavms were abundant in the sporangiophores (4.5 nmol per g fresh mass) and the spores (60 nmol per g fresh mass), but scarce in washed membranes (0.02–0.11 nmol per g fresh spor-angiophore mass). Autogenous fluorescence, whose absorption and emission wavelengths fit those of riboflavin, was seen by confocal microscopy, in part as clustered particles, in the actively growing parts of the mycelium, in the cytoplasm of sporangiophores, and in the spores.  相似文献   

20.
The properties of the riboflavin-binding site in the riboflavin-binding protein from egg white have been elucidated by determining constants for binding of flavin analogs to the protein and by changes in absorption spectra of free and bound flavins. The spectral changes and unfavorable interaction of the protein with charged species indicate that the overall flavin environment in the holoprotein is hydrophobic. Modification of either ring or side-chain portions of flavin usually results in a decrease of binding energy. Although no one portion of the structure is absolutely essential, both 7- and 8-methyl groups and 2′-hydroxyl group contribute most significantly to binding. The binding site at the region of C-2 and N-3 of the isoalloxazine is rather insensitive to the relative site of a substituent and thus relatively open, whereas considerable steric limitation is imposed at C-8, N-10, especially C-1′, and 4carbonyl positions. The hydroxyl groups of the N-10 side chain contribute in a stereoselective manner by formation of hydrogen bonds. Studies with model compounds that represent only a part of flavin suggest that the dimethylbenzenoid portion of the ring is involved in primary interactions of binding, and relatively buried in the protein. The quenching of protein fluorescence upon binding is mainly due to ground-state stacking interaction between a trytophanyl residue at the binding site and the quinoxaline portion, and not to Förster energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号