首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the denitrifying member of the beta-Proteobacteria Thauera aromatica, the anaerobic metabolism of aromatic acids such as benzoate or 2-aminobenzoate is initiated by the formation of the coenzyme A (CoA) thioester, benzoyl-CoA and 2-aminobenzoyl-CoA, respectively. Both aromatic substrates were transformed to the acyl-CoA intermediate by a single CoA ligase (AMP forming) that preferentially acted on benzoate. This benzoate-CoA ligase was purified and characterized as a 57-kDa monomeric protein. Based on V(max)/K(m), the specificity constant for 2-aminobenzoate was 15 times lower than that for benzoate; this may be the reason for the slower growth on 2-aminobenzoate. The benzoate-CoA ligase gene was cloned and sequenced and was found not to be part of the gene cluster encoding the general benzoyl-CoA pathway of anaerobic aromatic metabolism. Rather, it was located in a cluster of genes coding for a novel aerobic benzoate oxidation pathway. In line with this finding, the same CoA ligase was induced during aerobic growth with benzoate. A deletion mutant not only was unable to grow anaerobically on benzoate or 2-aminobenzoate, but also aerobic growth on benzoate was affected. This suggests that benzoate induces a single benzoate-CoA ligase. The product of benzoate activation, benzoyl-CoA, then acts as inducer of separate anaerobic or aerobic pathways of benzoyl-CoA, depending on whether oxygen is lacking or present.  相似文献   

2.
Abstract The interrelationships between an obligate hydrogen-producing and two different hydrogen-scavenging populations grown as synthrophic members of a 3-chlorobenzoate degrading methanogenic consortium were studied. The hydrogen producer was a benzoate degrader (strain BZ-2), and the hydrogen consumers were a 3-chlorobenzoate dechlorinating bacterium ( Desulfomonile tiedjei ) and a hydrogenotropic methanogen ( Methanospirillum strain PM-1). When a mixture of 3-chlorobenzoate plus benzoate was added to this consortium, the rate of benzoate degradation was 50% higher, at slightly lower H2 concentrations, than when benzoate alone was added. The enhanced benzoate degradation rate was apparantly triggered by the lower H2 concentration, as the rate of benzoate degradation was shown to be a function of the H2 concentration. By offering a hydrogen sink, in addition to methanogenesis, the dechlorinating hydrogen-scavenging population stimulated the rate of benzoate degradation. The lowering of the H2 concentration was very small, which was in agreement with the observation that the rate of methanogenesis was hardly affected by this lower hydrogen concentration. Thus there was no significant competition for H2 between the two hydrogen-scavenging populations in the consortium, as they practically complemented each other's hydrogen-scavenging potential at in situ hydrogen concentrations during the degradation of 3-chlorobenzoate. The H2 concentrations at which hydrogen driven methanogenesis by Methanospirillum occurred in the consortium were well below the threshold concentration extrapolated for this methanogen after growth at high H2 concentrations.  相似文献   

3.
4.
A highly simplified anaerobic consortium which was able to degrade benzoate under mesophilic conditions was obtained from digested sludge acclimatized with benzoate. It converted 5 mM benzoate to methane quantitatively within 3 weeks in the absence of any organic nutrients under an N2/CO2 atmosphere. Degradation of benzoate was strictly inhibited by hydrogen. The consortium consisted of at least three microorganisms including an autofluorescent irregular coccus which was identified as Methanogenium sp., a short rod which did not autofluoresce and was considered to be a benzoate degrader, and a filamentous bacterium apparently classified as Methanothrix (= “Methanosaeta”. When sulfate was added to the medium, the methanogens were readily replaced by a sulfate-reducing bacterium, probably belonging to the genus Desulfovibrio, which had still remained in very low number in the consortium in the absence of sulfate, and benzoate was stoichiometrically converted to acetate without methanogenesis. Of various compounds which were expected to be intermediates in the benzoate degradation, only crotonate was degraded by concentrated cells of the consortium.  相似文献   

5.
Degradation of phenol under meso- and thermophilic, anaerobic conditions   总被引:1,自引:0,他引:1  
Based on the results of preliminary studies on phenol degradation under mesophilic conditions with a mixed methanogenic culture, we proposed a degradation pathway in which phenol is fermented to acetate: Part of the phenol is reductively transformed to benzoate while the rest is oxidised, forming acetate as end product. According to our calculations, this should result in three moles of phenol being converted to two moles of benzoate and three moles of acetate (3 phenol + 2 CO2 + 3 H2O --> 3 acetate + 2 benzoate): To assess the validity of our hypothesis concerning the metabolic pathway, we studied the transformation of phenol under mesophilic and thermophilic conditions in relation to the availability of hydrogen. Hence, methanogenic meso- and thermophilic cultures amended with phenol were run with or without an added over-pressure of hydrogen under methanogenic and non-methanogenic conditions. Bromoethanesulfonic acid (BES) was used to inhibit methanogenic activity. In the mesophilic treatments amended with only BES, about 70% of the carbon in the products found was benzoate. During the course of phenol transformation in these BES-amended cultures, the formation pattern of the degradation products changed: Initially nearly 90% of the carbon from phenol degradation was recovered as benzoate, whereas later in the incubation, in addition to benzoate formation, the aromatic nucleus degraded completely to acetate. Thus, the initial reduction of phenol to benzoate resulted in a lowering of H2 levels, giving rise to conditions allowing the degradation of phenol to acetate as the end product. Product formation in bottles amended with BES and phenol occurred in accordance with the hypothesised pathway; however, the overall results indicate that the degradation of phenol in this system is more complex. During phenol transformation under thermophilic conditions, no benzoate was observed and no phenol was transformed in the BES-amended cultures. This suggests that the sensitivity of phenol transformation to an elevated partial pressure of H2 is higher under thermophilic conditions than under mesophilic ones. The lack of benzoate formation could have been due to a high turnover of benzoate or to a difference in the phenol degradation pathway between the thermophilic and mesophilic cultures.  相似文献   

6.
A soluble benzoate-coenzyme A (CoA) ligase was purified from the phototrophic bacterium Rhodopseudomonas palustris. Synthesis of the enzyme was induced when cells were grown anaerobically in light with benzoate as the sole carbon source. Purification by chromatography successively on hydroxylapatite, phenyl-Sepharose, and hydroxylapatite yielded an electrophoretically homogeneous enzyme preparation with a specific activity of 25 mumol/min per mg of protein and a molecular weight of 60,000. The purified enzyme was insensitive to oxygen and catalyzed the Mg2+ ATP-dependent formation of acyl-CoA from carboxylate and free reduced CoA, with high specificity for benzoate and 2-fluorobenzoate. Apparent Km values of 0.6 to 2 microM for benzoate, 2 to 3 microM for ATP, and 90 to 120 microM for reduced CoA were determined. The reaction product, benzoyl-CoA, was an effective inhibitor of the ligase reaction. The kinetic properties of the enzyme match the kinetics of substrate uptake by whole cells and confirm a role for benzoate-CoA ligase in maintaining entry of benzoate into cells as well as in catalyzing the first step in the anaerobic degradation of benzoate by R. palustris.  相似文献   

7.
A gene, badH, whose predicted product is a member of the short-chain dehydrogenase/reductase family of enzymes, was recently discovered during studies of anaerobic benzoate degradation by the photoheterotrophic bacterium Rhodopseudomonas palustris. Purified histidine-tagged BadH protein catalyzed the oxidation of 2-hydroxycyclohexanecarboxyl coenzyme A (2-hydroxychc-CoA) to 2-ketocyclohexanecarboxyl-CoA. These compounds are proposed intermediates of a series of three reactions that are shared by the pathways of cyclohexanecarboxylate and benzoate degradation used by R. palustris. The 2-hydroxychc-CoA dehydrogenase activity encoded by badH was dependent on the presence of NAD(+); no activity was detected with NADP(+) as a cofactor. The dehydrogenase activity was not sensitive to oxygen. The enzyme has apparent K(m) values of 10 and 200 microM for 2-hydroxychc-CoA and NAD(+), respectively. Western blot analysis with antisera raised against purified His-BadH identified a 27-kDa protein that was present in benzoate- and cyclohexanecarboxylate-grown but not in succinate-grown R. palustris cell extracts. The active form of the enzyme is a homotetramer. badH was determined to be the first gene in an operon, termed the cyclohexanecarboxylate degradation operon, containing genes required for both benzoate and cyclohexanecarboxylate degradation. A nonpolar R. palustris badH mutant was unable to grow on benzoate or cyclohexanecarboxylate but had wild-type growth rates on succinate. Cells blocked in expression of the entire cyclohexanecarboxylate degradation operon excreted cyclohex-1-ene-1-carboxylate into the growth medium when given benzoate. This confirms that cyclohex-1-ene-1-carboxyl-CoA is an intermediate of anaerobic benzoate degradation by R. palustris. This compound had previously been shown not to be formed by Thauera aromatica, a denitrifying bacterium that degrades benzoate by a pathway that is slightly different from the R. palustris pathway. 2-Hydroxychc-CoA dehydrogenase does not participate in anaerobic benzoate degradation by T. aromatica and thus may serve as a useful indicator of an R. palustris-type benzoate degradation pathway.  相似文献   

8.
A stabilized consortium of microbes which anaerobically degraded benzoate and produced CH4 was established by inoculation of a benzoate-mineral salts medium with sewage sludge; the consortium was routinely subcultured anaerobically in this medium for 3 years. Acetate, formate, H2 and CO2 were identified as intermediates in the overall conversion of benzoate to CH4 by the culture. Radioactivity was equally divided between the CH4 and CO2 from the degradation of uniformly ring-labeled [14C]benzoate. The methyl group of acetate was stoichiometrically converted to CH4. Acetate, cyclohexanecarboxylate, 2-hydroxycyclohexanecarboxylate, o-hydroxybenzoic acid and pimelic acid were converted to CH4 without a lag suggesting that benzoate was degraded by a reductive pathway. Addition of o-chlorobenzoate inhibited benzoate degradation but not acetate degradation or methane formation. Two methanogenic organisms were isolated from the mixed culture, neither organism was able to degrade benzoate, showing that the methanogenic bacteria served as terminal organisms of a metabolic food chain composed of several organisms. Removal of intermediates by the methanogenic bacteria provided thermodynamically favorable conditions for benzoate degradation.  相似文献   

9.
Benzoate degradation by an anaerobic, syntrophic bacterium, strain SB, in coculture with Desulfovibrio sp. strain G-11 reached a threshold value which depended on the amount of acetate added and ranged from about 2.5 to 29.9 (mu)M. Increasing acetate concentrations also uncompetitively inhibited benzoate degradation. The apparent V(infmax) and apparent K(infm) for benzoate degradation decreased with increasing acetate concentration, but the benzoate degradation capacities (V(infmax)/K(infm)) of cell suspensions remained comparable. The addition of an acetate-using bacterium to cocultures after the threshold was reached resulted in the degradation of benzoate to below the detection limit. Mathematical simulations showed that the benzoate threshold was not predicted by the inhibitory effect of acetate on benzoate degradation kinetics. With nitrate instead of sulfate as the terminal electron acceptor, no benzoate threshold was observed in the presence of 20 mM acetate even though the kinetics of benzoate degradation were slower with nitrate rather than sulfate as the electron acceptor. When strain SB was grown with Desulfovibrio sp. strain DG2 that had a fourfold-lower V(infmax) for hydrogen use than strain G-11, the V(infmax) for benzoate degradation was 37-fold lower than that of strain SB-G-11 cocultures. The Gibb's free energy for benzoate degradation was less negative in cell suspensions with a threshold than in suspensions without a threshold. These studies showed that the threshold was not a function of the inhibition of benzoate degradation by acetate or the toxicity of the undissociated form of acetate. Rather, a critical or minimal Gibb's free energy may exist where thermodynamic constraints preclude further benzoate degradation.  相似文献   

10.
An anaerobic, motile, gram-negative, rod-shaped, syntrophic, benzoate-degrading bacterium, strain SB, was isolated in pure culture with crotonate as the energy source. Benzoate was degraded only in association with an H2-using bacterium. The kinetics of benzoate degradation by cell suspensions of strain SB in coculture with Desulfovibrio strain G-11 was studied by using progress curve analysis. The coculture degraded benzoate to a threshold concentration of 214 nM to 6.5 microM, with no further benzoate degradation observed even after extended incubation times. The value of the threshold depended on the amount of benzoate added and, consequently, the amount of acetate produced. The addition of sodium acetate, but not that of sodium chloride, affected the threshold value; higher acetate concentrations resulted in higher threshold values for benzoate. When a cell suspension that had reached a threshold benzoate concentration was reamended with benzoate, benzoate was used without a lag. The hydrogen partial pressure was very low and formate was not detected in cell suspensions that had degraded benzoate to a threshold value. The Gibbs free energy change calculations showed that the degradation of benzoate was favorable when the threshold was reached. These studies showed that the threshold for benzoate degradation was not caused by nutritional limitations, the loss of metabolic activity, or inhibition by hydrogen or formate. The data are consistent with a thermodynamic explanation for the existence of a threshold, but a kinetic explanation based on acetate inhibition may also account for the existence of a threshold.  相似文献   

11.
Benzoate 1,2-dioxygenase (BDO) of Rhodococcus opacus 1CP, which carried out the initial attack on benzoate, was earlier shown to be the enzyme with a narrow substrate specificity. A kinetics of interaction between benzoate 1,2-dioxygenase and substituted benzoates was assessed taking into account the enlarged list of the type of inhibition and using whole cells grown on benzoate. The type of inhibition was determined and the constants of a reaction of BDO with benzoate in the presence of 2-chlorobenzoate (2CBA), 3,5-dichlorobenzoate (3,5DCBA), and 3-methylbenzoate (3MBA) were calculated. For 2CBA and 3MBA, the types of inhibition were classified as biparametrically disсoordinated inhibition and transient inhibition (from activation towards inhibition), respectively. The process of not widely recognized pseudoinhibition of a BDO reaction with benzoate by 3,5DCBA was assessed by the vector method for the representation of enzymatic reactions. Ki value was determined for 2CBA, 3MBA, and 3,5DCBA as 337.5, 870.3, and 14.7 μM, respectively.  相似文献   

12.
An inducible benzoate-4-hydroxylase has been partially purified from crude extracts of the mycelial felts of Aspergillus niger. This enzyme catalyzes the transformation of benzoate to p-hydroxybenzoate with equimolar consumption of NADPH and O2. It requires tetrahydropteridine as a prosthetic group. The optimum activity was found at pH 6.2 with a Km value at 30 degrees C of 1.6-10-minus 4 for NADPH and 1.3-10-minus 4 M for benzoate. Fe-2+ (iron) is required for the enzyme activity. The enzyme is stabilized by the inclusion of benzoate, EDTA and glutathione in the extracting buffer. The enzyme is specific for benzoate as substrate. Sulfhydryl groups(s) are essential for enzyme activity as indicated by p-chloromercuri-benzoate and N-ethylmaleimide inactivation. Benzoate-4-hydroxylase activity is decreased in the mycelial felts of Aspergillus niger grown in the presence of higher concentrations of benzoate. Maximum activity of the enzyme was observed at 36 h after inoculation.  相似文献   

13.
A syntrophic consortium was enriched in a basal medium containing cinnamate as the carbon and energy source. It was found to consist of three morphologically distinct microbes, viz., a short, rod-shaped, non-motile bacterium with distinctly pointed ends, Papillibacter cinnamivorans; a rod-shaped, motile bacterium with rounded ends, Syntrophus sp.; and a methanoarchaeon, Methanobacterium sp. This methanogen was then replaced by a collection strain of Methanobacterium formicicum. A syntrophic interdependency of the three partners of the consortium was observed during growth on cinnamate. In the presence of bromoethanesulfonic acid (BESA), cinnamate was transformed to benzoate, whereas under methanogenic conditions without BESA, cinnamate was first transformed to benzoate via beta-oxidation and subsequently completely degraded into acetate, CH(4), and CO(2). Papillibacter cinnamivorans was responsible for benzoate production from cinnamate, whereas a syntrophic association between Syntrophus sp. and the methanogen degraded benzoate to acetate, CH(4), and CO(2). A new anaerobic degradation pathway of cinnamate into benzoate via beta-oxidation by a pure culture of P. cinnamivorans is proposed.  相似文献   

14.
A stable, syntrophic benzoate-degrading bacterial consortium was enriched from sewage sludge. It oxidized benzoate or 3-phenylpropionate to acetate, H2 and CO2. As hydrogen scavengers Methanospirillum hungatei and Desulfovibrio sp. were present. The benzoate-degrading bacteria of this syntrophic culture and of Syntrophus buswelli were able to grow with benzoate/crotonate or crotonate alone in the absence of a hydrogen-utilizing partner organism. If crotonate was the only substrate, acetate and butyrate were produced, while during growth on benzoate or 3-phenylpropionate crotonate served as a reducible co-substrate and was exclusively converted to butyrate. In the presence of crotonate interspecies hydrogen transfer was not necessary as a hydrogen sink. The benzoate degrader was isolated as a pure culture with crotonate as the only carbon source. The pure culture could also grow with benzoate/crotonate or 3-phenylpropionate/crotonate. The effect of high concentrations of crotonate and of acetate or butyrate on growth of the benzoate degrader was investigated. The benzoate degrader was compared with S. buswellii for its morphology, physiology and DNA base composition. Except for the fact that S. buswellii was also able to grow on cinnamate, no differences between the two organisms were detected. The isolate is named S. buswelli, strain GA.  相似文献   

15.
Sodium benzoate inhibited PC and octanoic acid-mediated State 3 respiration rates by 39 and 29%, respectively, at 0.5 mM in isolated rat liver mitochondria. At 2 mM, benzoate did not affect State 3 respiration rates with either succinate or malate plus glutamate, indicating that it did not act as an uncoupler. The oxidation of palmitate and octanoate was inhibited by 39 and 54% at 2 mM benzoate in liver homogenates. Benzoate, at 10 mmol/kg caused significant decreases in the levels of hepatic ATP, CoA, and acetyl-CoA. Administration of sodium benzoate to rats caused a dose-dependent increase in hepatic ammonia levels. However, the inhibitory effect of benzoate on fatty acid oxidation is not mediated through ammonia since ammonium chloride, at 1 mM, did not inhibit PC or octanoate oxidation in mitochondria or their oxidation in liver homogenate. Our results warrant a reevaluation of the use of sodium benzoate in the treatment of hyperammonemia.  相似文献   

16.
Summary An obligate syntrophic culture was selected in mineral medium with phenol as the only carbon and energy source. The consortium consisted of a short and a long rod-shaped bacterium and of low numbers of Desulfovibrio cells, and grew only in syntrophy with methanogens, e. g. Methanospirillum hungatei. Under N2/CO2, phenol was degraded via benzoate to acetate, CH4 and CO2, while in the presence of H2/CO2 benzoate was formed, but not further degraded. When 4-hydroxybenzoate was fed to the mixed culture, it was decarboxylated to phenol prior to benzoate formation and subsequent ring cleavage. Isolation of pure cultures of the two rod-shaped bacteria failed. Microscopic observations during feeding of either 4-hydroxybenzoate, phenol or benzoate implied an obligate syntrophic interdependence of the two different rod-shaped bacteria and of the methanogen. The non-motile rods formed phenol from 4-hydroxybenzoate and benzoate from phenol, requiring an as yet unknown co-substrate or co-factor, probably cross-fed by the short, motile rod. The short, motile rodshaped bacterium grew only in syntrophy with methanogens and degraded benzoate to acetate, CO2 and methane. Desulfovibrio sp., present in low numbers, apparently could not contribute to the degradation of phenol or 4-hydroxybenzoate.  相似文献   

17.
In methanogenic environments, the main fate of benzoate is its oxidization to acetate, H(2) and CO(2) by syntrophic associations of hydrogen-producing benzoate degraders and hydrogen-using methanogens. Here, we report the use of benzoate as an electron acceptor. Pure cultures of S. aciditrophicus simultaneously degraded crotonate and benzoate when both substrates were present. The growth rate was 0.007 h(-1) with crotonate and benzoate present compared with 0.025 h(-1) with crotonate alone. After 8 days of incubation, 4.12 +/- 0.50 mM of cyclohexane carboxylate and 8.40 +/- 0.61 mM of acetate were formed and 4.0 +/- 0.04 mM of benzoate and 4.8 +/- 0.5 mM of crotonate were consumed. The molar growth yield was 22.7 +/- 2.1 g (dry wt) of cells per mol of crotonate compared with about 14.0 +/- 0.1 g (dry wt) of cells per mol of crotonate when S. aciditrophicus was grown with crotonate alone. Cultures grown with [ring-(13)C]-benzoate and unlabelled crotonate initially formed [ring-(13)C]-labelled cyclohexane carboxylate. No (13)C-labelled acetate was detected. In addition to cyclohexane carboxylate, (13)C-labelled cyclohex-1-ene carboxylate was detected as an intermediate. Once almost all of the benzoate was gone, carbon isotopic analyses showed that cyclohexane carboxylate was formed from both labelled and non-labelled metabolites. Glutarate and pimelate were also detected at this time and carbon isotopic analyses showed that each was made from a mixture labelled and non-labelled metabolites. The increase in molar growth yield with crotonate and benzoate and the formation of [ring-(13)C]-cyclohexane carboxylate from [ring-(13)C]-benzoate in the presence of crotonate are consistent with benzoate serving as an electron acceptor.  相似文献   

18.
19.
Abstract Teltrachloroethylene (PCE) was biotransformed by reductive dehalgenation under anoxic conditions with benzoate as the electron donor. The experiments were carried out under batch culture conditions with biomass from an anoxic fixed bed reactor fed with benzoate and PCE. Inhibition of methanogenesis by bromoethane-sulfonic acid (BES) resulted in a complete inhibition of benzoate degradation. Benzoate, however, was decomposed in the presence of BES if PCE was added to the cultures. With 2.8 mmol/1 PCE, that was transformed to 1.4 mmol/1 cis-1,2-dichloroethylene (DCE) and 3.8 mmol/1 chloride, 2 mmol/1 benzoate were degraded to about 3.2 mmol/1 acetate. The elimination of benzoate was directly proportional to DCE accumulation, ranging between 1:0.5 and 1:1.  相似文献   

20.
Pseudomonas aeruginosa 142 and a presumed variant were grown axenically in chemostats on salicylate/benzoate or salicylate/glucose binary feeds. Each substrate was supplied at 2, 10, 50, 90, 98, or 100% of the total energy flux. Two experiments were also run with ternary mixtures using the same substrates. Aliquots were transferred to fed-batch reactors receiving the same substrates at the same specific rates as the chemostat, but with one substrate radiolabeled with 14C. Radiolabel incorporated into biomass, 14CO2, and soluble microbial products over a period of 8 minutes was used to establish the biomass yield, CO2 yield, and product yield, respectively, associated with a given substrate. The effect of the percent substrate in the feed on the yields depended on the pair of substrates supplied. When benzoate comprised 50% or more of the applied substrate in salicylate/benzoate feeds, the fraction of benzoate in the feed had a small effect on the yield values associated with benzoate. However, when benzoate constituted 2% or 10% of the feed, CO2 yields were lower, biomass yields were slightly lower, and product yields were higher. In contrast, the percent of salicylate in the feed had little effect on any of the salicylate yields for cells growing on the salicylate/benzoate feeds. When salicylate was mixed with glucose, the yields associated with salicylate behaved quite differently. Biomass and CO2 yields were lower and product yields higher when salicylate was 2% or 10% of the feed than when it was higher. In the same substrate mixtures, glucose-based biomass yields were higher and CO2 yields were lower when glucose constituted 2% or 10% of the feed but were constant for higher percentages. The results suggest that the fate of a substrate is relatively independent of the feed composition as long as the substrate in question constitutes a significant percentage of the mixture. Thus, in those situations the assumption of a constant biomass yield in multicomponent substrate modeling is justified. However, when a given substrate constitutes a small percentage of the feed, significant changes in yield may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号