首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We previously reported an ultrasound method for measuring the depth-dependent equilibrium mechanical properties of articular cartilage using quasi-static compression. The objective of this paper was to introduce our recent development for nondestructively measuring the transient depth-dependent strains of full-thickness articular cartilage specimens prepared from bovine patellae. A 50 MHz focused ultrasound transducer was used to collect ultrasound echoes from articular cartilage specimens (n=8) and sponge phantoms with open pores (n=10) during tests of compression and subsequent stress-relaxation. The transient displacements of the tissues at different depths along the compression direction were calculated from the ultrasound echoes using a cross-correlation tracking technique. An LVDT sensor and a load cell were used to measure the overall deformation of the tissue and the applied force, respectively. Results showed that the tissues inside the cartilage layer continued to move during the stress-relaxation phase after the compression was completed. In the equilibrium state, the displacements of the cartilage tissues at the depths of 1/4, 1/2, and 3/4 of the full-thickness reduced by 51%+/-22%, 54%+/-17%, and 50+/-17%, respectively, in comparison with its peak value. However, no similar phenomenon was observed in the sponge phantoms. Our preliminary results demonstrated that this ultrasound method may provide a potential tool for the nondestructive measurement of the transient depth-dependent processes involved in biological and bioengineered soft tissues as well as soft biomaterials under dynamic loading.  相似文献   

3.
We have isolated an activator of collagenase from medium conditioned with articular cartilage. The activity is contained in an acidic protein appearing as a doublet band of Mr 57,000 and 56,000 on sodium dodecyl sulfate polyacrylamide gels. Both components of the doublet have identical isoelectric points as demonstrated by gel electrophoresis. Purified synovial collagenase has a high dependence on the presence of this factor for activity. Other known activators of latent proteolytic enzymes such as trypsin and mercurials will stimulate collagenase but only if activator protein is present. The activator protein is itself a latent metalloprotease because in the presence of p-aminophenylmercuric acetate and calcium it will digest casein. The caseinase activity and collagenase activation activity have identical heat inactivation profiles, both being stable to a temperature of 60 degrees C and partially inactivated at 80 degrees C. The synthesis of the activator is localized in the superficial zone of articular cartilage.  相似文献   

4.
A metalloprotease that digests cartilage proteoglycan optimally at pH 5.3 has been purified (4400-fold) to homogeneity from 20-g samples of human articular cartilage containing about 100 micrograms of enzyme. This enzyme was cleanly separated from a related neutral metalloprotease with an optimum pH of 7.2. The acid metalloprotease displays 40% of its maximum activity at pH 7.2 and so has significant activity at physiological pH. The protease is calcium-dependent and indirect evidence suggests that it may contain zinc at its active center. It occurs largely in a latent form that can be activated by aminophenylmercuric acetate. The apparent Mr of the latent form is 55,000 and of the active form, 35,000. The isoelectric point is at pH 4.9. The protease activity is inhibited by chelators, Z-phenylalanine, ovostatin, and tissue inhibitor of metalloproteinase from human articular cartilage. It differs from metalloproteinases such as enkephalinase and kidney brush-border protease in its failure to be strongly inhibited by phosphoramidon and Zincov. It cleaves the proteoglycan monomer of bovine nasal cartilage to fragments of approximately 140,000 Da. It cleaves the B chain of insulin at Ala14-Leu15 and Tyr16-Leu17. A survey of 26 cartilage extracts indicates this enzyme is elevated to about 3 times the normal level in human osteoarthritic cartilage and that the tissue inhibitor of metalloproteinase is only slightly diminished. Preliminary evidence points to the presence of a similar acid metalloprotease activity in human polymorphonuclear leukocytes.  相似文献   

5.
Collagen of articular cartilage   总被引:1,自引:0,他引:1  
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

6.
7.
Current operative and non-operative treatments for articular cartilage (AC) defect repair still fail to meet clinical expectations. These treatment options and challenges will be reviewed from a clinical perspective. Various polymeric and naturally occurring materials serving as scaffolds have shown promising neocartilage formation, but few studies are able to draw good clinical correlations. While tissue and organ engineering have generated public demand and expectations that engineered tissues will soon be available, there are still several critical hurdles that need to be overcome. There is a general preference for (1) avoiding the harvesting of normal tissues, (2) a single minimally invasive operative procedure for material insertion, and (3) a durable material that reproduces normal hyaline cartilage and will provide a good lifetime warranty. To avoid harvesting normal tissues, alternative cell sourcing is considered. On the materials front, there is a demand for molecular diversity and synthetic flexibility. For minimally invasive surgery, injectable materials have been actively researched. While initial studies are promising, there still remain a few challenges to overcome before injectable scaffolds will become clinically relevant. Key considerations are reviewed in this article. Advances in nanotechnology have enabled us to employ bottom-up approaches to scaffold design, fabrication, and characterization to better mimic the biological dimensions of matter. One approach involves self-assembly of small DNA-like molecules into larger superaggregates with nanoscale dimensions. One such self-assembling organic system is the rosette nanotubes. The design and properties are highlighted as they are related to solving orthopedic problems.  相似文献   

8.
An inhibitor of serine proteinases from human articular cartilage was purified to homogeneity by sequential ultrafiltration and ion exchange chromatography on CM-Sephadex C-50. The apparent molecular weight of the cationic glycoprotein (pI > 10) was determined to be 16.5 · 103 by SDS gel electrohoresis. The inhibitor blocked the activity of leukocyte elastase, cathepsin G and trypsin but not leukocyte collagenase. In kinetic studies for the interactions with leukocyte elastase a firm enzyme-inhibitor binding was obtained. Amino acid analyses did not reveal homologies with other serine proteinase inhibitors already purified from human tissues.  相似文献   

9.
The limited availability of fresh osteochondral allograft tissues necessitates the use of banking for long-term storage. A vitrification solution containing a 55% cryoprotectant formulation, VS55, previously studied using rabbit articular cartilage, was evaluated using porcine articular cartilage. Specimens ranging from 2 to 6 mm in thickness were obtained from 6 mm distal femoral cartilage cores and cryopreserved by vitrification or freezing. The results of post-rewarming viability assessments employing alamarBlue demonstrated a large decrease (p < 0.001) in viability in all three sizes of cartilage specimen vitrified with VS55. This is in marked contrast with prior experience with full thickness, 0.6 mm rabbit cartilage. Microscopic examination following cryosubstitution confirmed ice formation in the chondrocytes of porcine cartilage vitrified using VS55. Experiments using a more concentrated vitrification formulation (83%), VS83, showed a significant treatment benefit for larger segments of articular cartilage. Differences between the VS55 and the VS83 treatment groups were significant at p < 0.001 for 2 mm and 4 mm plugs, and at p < 0.01 for full thickness, 6 mm plugs. The percentage viability in fresh controls, compared to VS55 and VS83, was 24.7% and 80.7% in the 2 mm size group, 18.2% and 55.5% in the 4 mm size group, and 5.2% and 43.6% in the 6 mm group, respectively. The results of this study continue to indicate that vitrification is superior to conventional cryopreservation with low concentrations of dimethyl sulfoxide by freezing for cartilage. The vitrification technology presented here may, with further process development, enable the long-term storage and transportation of living cartilage for repair of human articular surfaces.  相似文献   

10.
11.
Articular cartilage is classified as permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in the epiphyseal growth plate. In the process of synovial joint development, articular cartilage originates from the interzone, developing at the edge of the cartilaginous anlagen, and establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators, such as Wnts, GDF5, Erg, and PTHLH, coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracellular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier's groove, the intra‐articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Furthermore, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. Birth Defects Research (Part C) 99:192–202, 2013 . © 2013 Wiley Periodicals, Inc .  相似文献   

12.
Articular cartilage consists mainly of extracellular matrix, mostly made of collagens and proteoglycans. These macromolecules have so far impaired the detailed two-dimensional electrophoresis-based proteomic analysis of articular cartilage. Here we describe a method for selective protein extraction from cartilage, which excludes proteoglycans and collagen species, thus allowing direct profiling of the protein content of cartilage by two-dimensional electrophoresis. Consistent electrophoretic patterns of more than 600 protein states were reproducibly obtained after silver staining from 500 mg of human articular cartilage from joints with diverse pathologies. The extraction yield increased when the method was applied to a chondrosarcoma sample, consistent with selective extraction of cellular components. Nearly 200 of the most intensely stained protein spots were analyzed by MALDI-TOF mass spectrometry after trypsin digestion. They represented 127 different proteins with diverse functions. Our method provides a rapid, efficient, and pertinent alternative to previously proposed approaches for proteomic characterization of cartilage phenotypes. It will be useful for detecting protein expression patterns that relate pathophysiological processes of cartilaginous tissues such as osteoarthritis and chondrosarcoma.  相似文献   

13.
Solubilization of collagen from bovine articular with pepsin requires the preliminary extraction of proteoglycans from the ground substance. Biochemical and physiochemical properties of this pepsin-solubilized collagen are independent of the pretreatment (extraction with 1.5M-CaCl2, 5M-guanidinium chloride or 0.2M-NaOH) and of the age range (2-4-year-old and 2-month-old animals). Characterization of the de-natured components, of the CNBr peptides and of the amino acid and cross-link composition shows that the collagen of the hyaline cartilage is all type II. Electrical birefringence measurements showed the presence of tropocollagen molecules (length 280nm) and molecules whose length is slightly less than twice that of the tropocollagen molecules. This latter molecule may be a dimer composed of two monomers linked by intermolecular head-to-tail bonds and whose theoretical length (530nm), according to the quarter-stagger theory, is in good agreement with our measured values (510-530nm). We have verified that the beta-components of this collagen are formed of two alpha-chains linked by the stable intermolecular bond, dehydrodihydroxylysinonorleucine. These dimeric molecules are absent from solutions of skin collagen whose beta-components possess only aldol-type intramolecular cross-links. Although reconstituted fibres from solutions of skin and cartilage collagen are similar, the segment-long spacing crystallites formed with pepsin-solubilized cartilage collagen present a symmetrical and dimeric form corresponding to the lateral aggregation of two monomers with an overlap (90nm) of the C-terminal ends.  相似文献   

14.
15.
16.
17.
Electrokinetic phenomena contribute to biomechanical functions of articular cartilage and underlie promising methods for early detection of osteoarthritic lesions. Although some transport properties, such as hydraulic permeability, are known to become anisotropic with compression, the direction-dependence of cartilage electrokinetic properties remains unknown. Electroosmosis experiments were therefore performed on adult bovine articular cartilage samples, whereby fluid flows were driven by electric currents in directions parallel and perpendicular to the articular surface of statically compressed explants. Magnitudes of electrokinetic coefficients decreased slightly with compression (from approximately -7.5 microL/As in the range of 0-20% compression to -6.0 microL/As in the 35-50% range) consistent with predictions of microstructure-based models of cartilage material properties. However, no significant dependence on direction of the electrokinetic coupling coefficient was detected, even for conditions where the hydraulic permeability tensor is known to be anisotropic. This contrast may also be interpreted using microstructure-based models, and provides insights into structure-function relationships in cartilage extracellular matrix and physical mediators of cell responses to tissue compression. Findings support the use of relatively simple isotropic modeling approaches for electrokinetic phenomena in cartilage and related materials, and indicate that measurement of electrokinetic properties may provide particularly robust means for clinical evaluation of cartilage matrix integrity.  相似文献   

18.
Articular cartilage has poor capacity of self-renewal and repair. Insufficient number and activity of resident mesenchymal (connective tissue) progenitors is likely one of the underlying reasons. Chondroprogenitors reside not only in the superficial zone of articular cartilage but also in other zones of articular cartilage and in the neighboring tissues, including perichondrium (groove of Ranvier), synovium and fat pad. These cells may respond to injury and contribute to articular cartilage healing. In addition, marrow stromal cells can migrate through subchondral bone when articular cartilage is damaged. We should develop drugs and methods that correctly stimulate resident progenitors for improvement of repair and inhibition of degenerative changes in articular cartilage.  相似文献   

19.
Structure and properties of knee articular cartilage are adapted to stresses exposed on it during physiological activities. In this study, we describe site- and depth-dependence of the biomechanical properties of bovine knee articular cartilage. We also investigate the effects of tissue structure and composition on the biomechanical parameters as well as characterize experimentally and numerically the compression-tension nonlinearity of the cartilage matrix. In vitro mechano-optical measurements of articular cartilage in unconfined compression geometry are conducted to obtain material parameters, such as thickness, Young's and aggregate modulus or Poisson's ratio of the tissue. The experimental results revealed significant site- and depth-dependent variations in recorded parameters. After enzymatic modification of matrix collagen or proteoglycans our results show that collagen primarily controls the dynamic tissue response while proteoglycans affect more the static properties. Experimental measurements in compression and tension suggest a nonlinear compression-tension behavior of articular cartilage in the direction perpendicular to articular surface. Fibril reinforced poroelastic finite element model was used to capture the experimentally found compression-tension nonlinearity of articular cartilage.  相似文献   

20.
Bellucci G  Seedhom BB 《Biorheology》2002,39(1-2):193-199
Although fatigue has been implicated in cartilage failure there are only two studies by the same author, and in both of which cartilage was tested in the direction parallel to the collagen orientation in the surface layer. In the present work articular cartilage was tested also along the perpendicular direction, being the direction in which cartilage possesses lower tensile strength.Specimens were tested under cyclic tensile load. Number of cycles at failure was recorded as well as elongation of the specimen. To date 72 specimens have been tested all from one knee joint.The number of cycles to failure ranged between two and 1.5 million. The surface and deep layers have better fatigue properties whether tested in the parallel or the perpendicular direction, while the middle layer was far weaker. Better fatigue behaviour was observed with specimens tested in parallel than in perpendicular direction to the fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号