首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summer phytoplankton distributions in the Weddell Sea   总被引:4,自引:4,他引:0  
Summary The quantitative composition of phytoplankton was studied along a transect of 14 hydrographic stations, between the southern coast of the Weddell Sea and the Antarctic Peninsula, during the austral summer of 1984–1985. The most apparent feature of the phytoplankton distribution was the presence of a bloom of Phaeocystis at a frontal zone over the shelf break, and the marked contrast between a southern region, with high phytoplankton biomass, and a poorer region north of the shelf break. The most widely distributed diatom genus was Nitzschia (Fragilariopsis section). The phytoplankton assemblage of the southern region included the silicoflagellate Distephanus speculum, the diatom Rhizosolenia alata and several heterotrophic dinoflagellates such as Protoperidinium antarcticum and P. applanatum. The northern assemblage could be characterized by the abundance of flagellates and small dinoflagellates, and by diatoms such as Chaetoceros criophilum, Corethron criophilum Nitzschia kerguelensis and other Nitzschia species of the Fragilariopsis section.  相似文献   

2.
The spatial distribution, species composition and abundance of ichthyoplankton in the Bransfield Strait and adjacent waters were studied during two cruises in the Antarctic spring 1991/92 and summer 1992/93 seasons. A multiple plankton net (Bioness) and a Bongo net were used to collect samples at 35 stations in 1991/92 and 75 stations in 1992/93. Early larval stages (14 species) and juveniles (13 species) representing the known Bransfield Strait ichthyofauna were present in the water column. The nototheniids predominated in the entire study area. The greatest species diversity was found in the uppermost 200 m of the water column in the Bransfield Strait. Notothenia gibberifrons and Nototheniops larseni dominated in spring, whilst in summer Pleuragramma antarcticum dominated in association with N. larseni. The dominant species in the Gerlache Strait were P. antarcticum and Notothenia kempi, while P. antarcticum and Trematomus scotti were predominant in the Bellingshausen Sea area.  相似文献   

3.
Summary The stomach contents of 142 Pleuragramma antarcticum from the southernmost part of the Weddell Sea (Gould Bay: 77°19S) and from the eastern coast (72°–74°S) were analyzed. The fish were collected in February 1983 and stored frozen. Size range of the investigated specimens was from 6.4 cm SL (7.3 cm TL) to 21.9 cm SL (24.1 cm TL). The fish were caught by bottom trawl (Gould Bay) and Agassiz Trawl and pelagic RMT-m net in the upper 300 m layer at the eastern coast, respectively. Thirty-six stomachs were empty or contained sand only. The most important prey in terms of biomass were euphausiids, which occurred in 49 stomachs at a mean number of 2. Their dry weight was estimated to be 15–50 times that of the next important food items, which were copepods, gastropods and gammarids. Krill (Euphausia superba) constituted up to 14% of the euphausiids in the diet of fish caught in the eastern Weddell Sea. The rest was usually made up by Euphausia crystallorophias. This species was taken with preference even when the abundance of E. superba in accompanying plankton catches was 16 times higher. In the Gould Bay, gastropods were frequently eaten despite high numbers of copepods in the plankton, whereas in the eastern Weddell Sea, copepods were abundant both in plankton and in the stomach content. The almost complete absence of the early stages of fish in the diet of Pleuragramma antarcticum in the southern and eastern Weddell Sea is due to a pronounced vertical segregation of fish of different sizes. This distribution pattern is thought to be an adaptive mechanism to avoid intraspecific predation, as 90% of the ichthyoplankton in that area is Pleuragramma antarcticum.  相似文献   

4.
Summary We studied the particle composition in the ocean surface layer (20–100 m), in terms of non-living versus living particles (< 20 m), along a transect over the Scotia Sea/Weddell Sea transition. The data are related to characteristics of the phytoplankton community and used in a Principal Component Analysis to differentiate between water masses. There was a striking change in particle community characteristics from Scotia Sea to Weddell Sea waters, especially clear at shallow depths (20 m). Total particle concentration decreased greatly moving south over the Confluence but the proportion of living particles increased enormously. This paralleled a change in the composition of the phytoplankton community, from a bloom to a regenerating system, with a striking reduction in the prominence of non-living particles. Densities of auto- and heterotrophic nanoflagellates and bacteria reached maximal values towards the southern end of the transect (8.0 × 103cm–3,4.6 × 103cm–3,1.0 × 106cm–3). The PCA based on particle characteristics and chlorophyll a, POC and PON values, distinguished Scotia from Weddell Sea waters and separated shallow from deeper stations.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

5.
Aim At the height of glaciations such as the Last Glacial Maximum (LGM), benthic life on polar continental shelves was bulldozed off nearly all of the Antarctic shelf by grounded ice sheets. The origins of the current shelf benthos have become a subject of considerable debate. There are several possible sources for the current Antarctic shelf fauna, the first of which is the continental slope and deep sea of the Southern Ocean. The high levels of reported eurybathy for many Antarctic species are taken as evidence supporting this. A second possible source for colonists is the southern margins of other continents. Finally, shelves could have been recolonized from refugia on the continental shelves or slopes around Antarctica. The current study investigates whether the patchily rich and abundant biota that now occurs on the Antarctic continental shelf recolonized from refugia in situ or elsewhere. Location Weddell Sea, Antarctica. Methods We examined bryozoan samples of the BENDEX, ANDEEP III and SYSTCO expeditions, as well as the literature. Using similarity matrices (Sørensen coefficient), we assessed similarities of benthos sampled from around Antarctica. By assessing numbers of species shared between differing depths and adjacent shelf areas, we evaluated the origins of cheilostome bryozoan communities. Results Bryozoans decreased from 28, 6.5 and 0.3 colonies per trawl, and 0.16, 0.046 and 0.0026 colonies per cm2 of hard surface from shelf to slope to abyssal depths. We found little and no support for recolonization of the Weddell Sea shelf by bryozoans from the adjacent slope and abyss, in the scenario of LGM faunal wipe‐out. The Weddell Sea shelf bryozoan fauna was considerably more similar to those on other Antarctic shelves than to that of the adjacent (Weddell Sea) continental slope. The known bryozoan fauna of the Weddell Sea shelf is not a subset of the Weddell Sea slope or abyssal faunas. Main conclusions We consider that the composition of the current Weddell Sea bryozoan fauna is most easily explained by in situ survival. Thus we consider that at least some of the Weddell Sea fauna persisted throughout the LGM, although not necessarily at the same locations throughout, to recolonize the large area currently occupied.  相似文献   

6.
Food and feeding ecology of emperor penguins in the eastern Weddell Sea   总被引:3,自引:3,他引:0  
Summary The diet of the emperor penguin Aptenodytes forsteri in the eastern Weddell Sea, Antarctica was studied during October and November 1986 by stomach content analysis. Emperor penguins fed mainly on Antarctic krill Euphausia superba, Antarctic silverfish Pleuragramma antarcticum and squid Psychroteuthis glacialis. Benthic prey was not found. The prey composition suggests two different feeding strategies, shallow dives exploring the rugged underside of sea ice where krill is taken, and deep dives when mesopelagic fish and squid are consumed. Chicks were fed on average every 1.44 days.  相似文献   

7.
Summary The effect on adequate sample size and sample volume of the abundances of three predominant copepod species, Metridia gerlachei, Calanus propinquus and Calanoides acutus, were studied in Bransfield Strait (Antarctic Peninsula) in the austral summer of 1988–1989 and waters north of the Weddell Sea in 1989–1990. Copepod abundances were higher in the area north of the Weddell Sea, with the exception of Metridia gerlachei, which was evenly distributed over both areas. Local (intra-station) patchiness was not found, indicating random distribution over small areas. In the assessment of inter-station variability in Bransfield Strait, with standard error of the mean set arbitrarily at 20% of the average abundance and a sampling volume of 150 m3, the theoretical minimum sample size (number of sampling stations) ranged from 6 to 17 for juvenile copepods and from 11 to 25 for adults. The minimum number of stations in the area north of the Weddell Sea reached from 5 to 7, and from 7 to 10 respectively.  相似文献   

8.
Gerd Hubold 《Polar Biology》1984,3(4):231-236
Summary In the zooplankton collected during three German Antarctic expeditions to the southern Weddell Sea in 1979/80, 1980/81 and 1983, the post-larvae of the nototheniid fish Pleuragramma antarcticum were found in 71–94% of the samples and represented 85–98% in numbers of all fish caught. In 1983, the abundance of post-larvae was up to 88 ind./m2 (corresponding to 3 ind./m3). Highest concentrations were generally found over the continental slope and innershelf depressions. More than 70% of the post-larvae were caught in the upper 50–100 m water layer, in the well stratified Summer Water of -1.3 to -0.5°C. The Summer Water is shifted towards the outer edge of the shelf by Ekman transport and accumulation of post-larvae in the slope front and eddies can be explained by this drift. Older Pleuragramma antarcticum of age 1 resemble in their vertical distribution the juveniles and adults, 40–60% of which were caught on the shallower parts of the shelf in cold Ice Shelf Water of -1.8 to -2.1°C in depths below 200 m. Mean abundances of the yearclasses varied by a factor of 16 in age 0 fish and by factor of 10 in age 1. The size of a yearclass may be related to the varying appearance and persistence of an ice free coastal polynya.  相似文献   

9.
The Ross Sea, a large, high-latitude (72–78°S) embayment of the Antarctic continental shelf, averages 500 m deep, with troughs to 1,200 m and the shelf break at 700 m. It is covered by pack ice for 9 months of the year. The fish fauna of about 80 species includes primarily 4 families and 53 species of the endemic perciform suborder Notothenioidei. This review focuses on the diet and role in the food web of notothenioids and top-level bird and mammal predators, and also includes new information on the diets of artedidraconids and bathydraconids. Although principally a benthic group, notothenioids have diversified to form an adaptive radiation that includes pelagic and semipelagic species. In the southern Ross Sea, notothenioids dominate the fish fauna at levels of abundance and biomass >90% and are, therefore, inordinately important in the food web. Antarctic krill (Euphausia superba) and mesopelagic fishes are virtually absent from the shelf waters of the Ross Sea. Of the four notothenioid families, nototheniids show the most ecological and dietary diversification, with pelagic, cryopelagic, epibenthic and benthic species. Neutrally buoyant Pleuragramma antarcticum constitutes >90% of both the abundance and biomass of the midwater fish fauna. Most benthic nototheniids are opportunistic and feed on seasonally or locally abundant zooplanktonic prey. Artedidraconids are benthic sit-and-wait predators. Larger bathydraconids are benthic predators on fish while smaller species feed mainly on benthic crustaceans. Channichthyids are less dependent on the bottom for food than other notothenioids. Some species combine benthic and pelagic life styles; others are predominantly pelagic and all consume euphausiids and/or fish. South polar skuas, Antarctic petrels, Adélie and emperor penguins, Weddell seals and minke and killer whales are the higher vertebrate components of the food web, and all prey on notothenioids to some extent. Based on the frequency of occurrence of prey items in the stomachs of fish, bird and mammal predators, P. antarcticum and ice krill E. crystallorophias are the key species in the food web of the Ross Sea. P. antarcticum is a component of the diet of at least 11 species of nototheniid, bathydraconid and channichthyid fish and, at frequencies of occurrence from 71 to 100%, is especially important for Dissostichus mawsoni, Gvozdarus svetovidovi and some channichthyids. At least 16 species of notothenioids serve as prey for bird and mammal predators, but P. antarcticum is the most important and is a major component of the diet of south polar skua, Adélie and emperor penguins and Weddell seals, at frequencies of occurrence from 26 to 100%. E. crystallorophias is consumed by some nototheniid and channichthyid fish and can be of importance in the diet of emperor and Adélie penguins, although in the latter case, this is dependent on location and time of year.Unlike the linear phytoplanktonE. superbaconsumers of the E. superba food chain hypothesized for much of the Southern Ocean, the food web of the Ross Sea shelf is non-linear, with complex prey-predator interactions. Notothenioid fish play a key role: as predators, they occupy most of the trophic niches available in the ecosystem, relying on benthic, zooplanktonic and nektonic organisms; as prey, they are important food resources for each other and for most top predators living and foraging on the shelf. They also constitute the major link between lower (invertebrates) and higher (birds and mammals) levels of the food web. This is especially true for P. antarcticum. Along with E. crystallorophias, its ecological role in the Ross Sea is equivalent to that of myctophids and E. superba elsewhere in the Southern Ocean.  相似文献   

10.
Spawning dates of Antarctic krill, Euphausia superba Dana, were calculated from larval stage compositions, and corrected using data on maturity stage composition of the adult krill. Both original and literature data obtained from the Antarctic Peninsula-Bellingshausen Sea area and around the Antarctic continent were used. A time series (1975/76–1986/87) for several subareas of the Antarctic Peninsula-Bellingshausen Sea area indicates considerable variation in the krill spawning start, maxima and completion. In particular years (1975/76, 1980/81), krill spawning in the western Atlantic sector began relatively early, was intensive, and completed early. Some years (1977/78, 1981/82) were characterised by long and non-synchronised krill spawning. Compiled data sets for the Atlantic sector (1980/81), the entire Antarctic (1983/84) and the east Indian-west Pacific Antarctic waters (1981–85) reveal some spatial patterns in krill reproductive timing. In relation to spawning timing variation, the habitats of the krill population fall into five categories: (1) areas with an early beginning (late Novemberearly December) and a variable, but normally long, duration (3–3.5 months) of krill spawning; this is generally the southern boundary of the Antarctic Circumpolar Current, (2) areas with an early beginning, but a short duration of krill spawning (Gerlache Strait), (3) areas with a highly variable (within 1–1.5 months) beginning and a relatively long duration (ca. 3 months) of krill spawning (Bransfield Strait, Palmer Archipelago), (4) areas with a late beginning (late December–January) and a long duration of krill spawning (Bellingshausen Sea, D'Urville Sea, and Balleny Islands area), and (5) areas with a delayed beginning, but a very short duration (ca. 1.5 months) of krill spawning (Ross Sea slope, probably the Coastal Current area off the Lasarev Sea shelf and in the south-eastern Weddell Sea. These patterns can be partly explained by peculiarities of the ice regime in particular areas and by routes of krill movement within water circulation systems.  相似文献   

11.
The composition, abundance and vertical distribution of chaetognaths were analysed along a transect in the Weddell Sea during late spring. Three species were identified: Eukrohnia hamata (90.8%), Sagitta marri (6.4%) and S. gazellae (2.8%). Only juvenile stages were collected in the samples, a result related both to the type of sampling gear employed (mesh size: 100 μm) and the species' life-cycles. The vertical distributions showed that the juvenile stages of these species tended to aggregate at considerable depth (1000–500 m). It is postulated that this pattern may be related to the life-cycles of these species in association with seasonal Antarctic conditions, similar to the pattern postulated for krill and other polar crustaceans. Accepted: 10 July 2000  相似文献   

12.
Summary Planktonic diatoms were sampled in the ice-edge zone of the Bellingshausen Sea during the early austral spring of 1990 and of the Weddell Sea during the late spring of 1983, the autumn of 1986, and the winter of 1988. The four cruises in the Antarctic marginal ice edge zones, combined with the summer cruise in Prydz Bay during a brief ice-free period (1988) provided us with opportunities for spatial and seasonal studies of diatom abundance and distribution in the water column. Cells from discrete water samples from 73 stations near the marginal ice-edge zones during all seasons were counted to gain quantitative information on the composition, abundance, and distribution of diatoms. Diatom abundance was dominated by the pennate diatom, usually nanoplanktonic, Fragilariopsis cylindrus (Grunow) Krieger, during all five cruises. The highest integrated numbers of F. cylindrus were found during the summer cruise with 7.9 × 1010 cells m–2 and the lowest numbers were found during the winter cruise with 1.1 × 108 cells m–2. The average integrated abundance of F. cylindrus from the five cruises was about 35% of the total diatom abundance. The overall spatial pattern of F. cylindrus near the marginal ice-edge zones during the five seasonal cruises were similar with the highest number of cells in open waters compared to ice-covered waters. When all 73 stations during the five cruises were included in the correlation analysis, the abundance of total diatoms was positively correlated with the abundance of F. cylindrus, suggesting that the ice-edge pulses of diatom assemblages in the water column largely reflected its abundance. Cluster analysis revealed that the stations in marginal ice-edge zones were not only separated by seasons and locations, but they also separated based on location of stations in relation to the ice edge (open water stations vs. ice-covered stations).  相似文献   

13.
The association between the variability of phytoplankton biomass and community structure and the distribution of water masses around the Antarctic Peninsula were examined during austral summer 1993. Phytoplankton biomass showed high variability, and was dominated by an autotrophic flagellate (Cryptomonas sp.) that represented, on average, 91% of total phytoplankton biomass. The lowest phytoplankton biomasses were associated with the strongly mixed, saline, cold waters characteristic of the Weddell Sea water mass, and with the waters influenced by ice melt from the Bellingshausen Sea. The highest biomasses were found in the confluence of these water masses, where a front develops. Community composition also differed among water masses, with eukariotic picoplankton and diatoms having their highest relative contribution to community biomass in stations with Bellingshausen Sea and Weddell Sea water masses, whereas the abundance of Cryptomonas sp. was highest at the confluence of these waters. These results indicate that mesoscale processes, that determine water mass distribution, are of paramount importance in controlling the time and space variability of Antarctic phytoplankton.  相似文献   

14.
Summary Neutralizing antibodies against European phocine herpesvirus were detected in sera of to two Antarctic seal species, Weddell seals (Leptonychotes weddellii) and crabeater seals (Lobodon carcinophagus), collected in the eastern Weddell Sea. A large number of positive sera crossneutralized canine herpesvirus, but only few sera also contained antibodies to feline herpesvirus. The Weddell seals suffered from a respiratory disease when the sera were collected (January–February, 1990). The significance and possible origin of herpesvirus infections in Antarctic seals documented for the first time in this communication is discussed. All sera were negative for antibodies against phocine and canine distemper viruses.  相似文献   

15.
Summary Micronekton and macrozooplankton assemblages (0–1000 m) were sampled from the open ocean in the vicinity of marginal ice zones in the southern Scotia and western Weddell Seas using midwater trawls. Small regional differences in species composition were found in the differing hydrographic settings with the Scotia Sea being slightly more diverse. Most species exhibited broad vertical ranges with no distinct pattern of vertical movement. Exceptions were mesopelagic fish and Salpa thompsoni which undertook diel vertical migrations. Biomass was high (2.4–3.1 g DW/m2), comparable to Pacific subarctic waters. Euphausia superba and Salpa tompsoni were the numerical and biomass dominants, representing over 50% of the total numbers and standing stocks. In terms of biomass, euphausiids were the most important group at shallow depths (0–200 m) but were surpassed by salps in the Scotia Sea and mesopelagic fish in the Weddell Sea when all depths down to 1000 m were considered. Pelagic fish biomass (3.3–4.4 g WW/m2) greatly exceeded published estimates for birds (0.025–0.070 g WW/m2), seals (0.068–0.089 g WW/m2) and whales (0.167 to 0.399 g WW/m2), making mesopelagic fish the most prevalent krill predators in the Antarctic oceanic system.  相似文献   

16.
Summary Ichthyoplankton was sampled from the Antarctic Peninsula area of the South Polar Ocean in early winter (May and June 1986). A total of 153 eggs from two species and 1368 larvae or juvenile stages from 12 species were obtained. These included pelagic species, and demersal species with a long pelagic larval or juvenile phase. Most abundant were larvae of Pleuragramma antarcticum and Notothenia kempi, and eggs of Notothenia neglecta. The distribution of notothenioid and paralepidid larvae was apparently unaffected by ice cover, whereas myctophid larvae were confined to ice-free waters. Areas where newly hatched Chionodraco hamatus occurred coincided with dense aggregations of Euphausia superba (Krill) furcilia larvae which is a potential food resource during winter. The hatching of icefish larvae during winter is apparently independent of the seasonal production cycle. Epipelagic eggs of Notothenia neglecta were found during the spawning season, which suggests that eggs ascend to the surface after demersal spawning and that development takes place near the sea surface during winter. Larvae of Notothenia kempi were chiefly confined to shelf and slope waters to the west of the Antarctic Peninsula, with larger larvae found in coastal shelf areas. Pleuragramma antarcticum occurred in the coastal waters off the Biscoe Islands, in the Gerlache Strait, and in the northern Bransfield Strait. The smallest larvae were found in the northern Bransfield Strait, whereas those at the Biscoe Islands and in Gerlache Strait waters were larger and of a similar size. A cyclonic gyre to the west of the Antarctic Peninsula observed in the austral summer was likely to have affected the larval drift of Pleuragramma antarcticum and Notothenia kempi. Differences in the timing of spawning and hatching and the vertical distribution of these larvae will lead to different transport and spatial distribution patterns. It is hypothesized that early winter conditions do not imply severe limitations on the year-class success of larval fish. Dispersal and increased mortality may occur during the second half of the winter.  相似文献   

17.
Records of extant Monoplacophora are still scarce, often limited to single specimens or empty shells. Little is known about monoplacophoran diversity, distribution and biology. This study summarizes the present distributional knowledge of all Antarctic monoplacophorans, adding new records from the Eastern Weddell Sea. The record of Laevipilina antarctica from over 3,000 m depth extends its previously known bathymetrical range from 210 to 644 m down to abyssal depths. Special symbiosis with bacteria might contribute to this remarkable eurybathy that is unique amongst extant monoplacophoran species. L. antarctica now is known from several stations along the shelf and slope of the Eastern Weddell and Lazarev Seas. Micropilina arntzi seems limited to the shelf and upper slope of the Lazarev Sea. An undescribed Laevipilina species is known only from a single station at the upper slope of the Eastern Weddell Sea. Distributional patterns are discussed and correlated to environmental conditions and available biological information.  相似文献   

18.
Summary 108 successful ground and Agassiz trawl catches were taken between 155 and 2031 m depth in the eastern Weddell Sea on board RV Polarstern in spring and summer (October–February) 1985–1989. In addition, 7 hauls were taken with a semipelagic trawl. Only 19 hauls (16.5%) contained no shrimps. The others yielded large numbers of Notocrangon antarcticus, Chorismus antarcticus, and Nematocarcinus lanceopes as well as 20 Lebbeus antarcticus and 11 specimens of an Eualus species new to science. 8 Pasiphaea scotiae were caught in a pelagic krill trawl. No reptant decapod crustaceans were detected in the study area. Shrimp densities determined from trawl catches were lower than estimates derived from underwater photography but in the same order of magnitude. Although yields of the three common shrimp species in some cases exceeded 20 kg per 0.5 h haul, shrimp stocks in the area cannot be considered to be of commercial significance. A wider geographical distribution and greater frequency of shrimps in high Antarctic waters was found than described hitherto. There was considerable variation in numbers, sex composition, occurrence at different depths, and size-frequency distributions. C. antarcticus and N. antarcticus grow to a larger size compared with individuals from the Antarctic Peninsula area. Within the area of investigation, length frequency distributions are skewed towards larger sizes at higher latitudes. In the eastern Weddell Sea larger specimens of the three common species live at greater depths than smaller individuals. Potential reasons for these differences are discussed.AWI Publication No. 124  相似文献   

19.
Summary Stomach and intestine samples from 21 adult Weddell seals were used to study the diet of these seals from the eastern and southern Weddell Sea coast from January to February 1983 and 1985. Fish occurred in all seals, squid in five, octopods in three and Euphausia crystallorophias in one seal. Pleuragramma antarcticum was the predominant fish in the diet, constituting 61.1% of otoliths in 1983 samples and 93.8% in 1985. Aethotaxis mitopteryx, Dissostichus mawsoni, unidentified Trematomus spp. and channichthyids were also recorded. Size and wet weight of P. antarcticum were calculated from uneroded otoliths, found in 6 seal stomachs with liquid food pulp, collected during early morning hours in 1985. Size distribution of P. antarcticum from individual seals was reasonably constant, ranging between 5.0 and 22.0 cm SL; adult fish from about 14.0 to 19.0 cm SL predominated. P. antarcticum in seals from the southern area had a larger median size (16.5 cm SL), than those from further east (15.5 cm SL). Calculated wet weights of all P. antarcticum from individual seal stomachs ranged between 4.7 and 16.9 kg the mean was 12.8 kg. Comparisons with net-hauls from the southern Gould Bay suggest that Weddell seals feed mainly in deeper water layers (>400 m) where adult P. antarcticum occur at higher densities.  相似文献   

20.
Summary Sea ice cores were obtained from eleven fast ice stations and one floe in the Weddell Sea, Antarctica in January–February 1985. All cores from the north eastern part of the Weddell Sea contained numerous living and dead planktic foraminifers of the species Neogloboquadrina pachyderma (Ehrenberg), while cores drilled in southern parts were barren of foraminifers with one exception. Foraminiferal abundances were variable, with numbers up to 320 individuals per liter melted sea ice. Distribution of foraminifers appears to be patchy, parallel cores taken less than 30 cm apart contained numbers which varied considerably. On the other hand, three cores taken on a transect each more than 3 km apart showed striking similarities. In general, small dead tests were found in the upper parts of the sea ice cores while large living individuals mainly occurred in lower sections. Abundant diatoms probably serve as a food source for the foraminifers. Correlation of foraminiferal abundance with salinity, chlorophyll and nutrient profiles are inconsistent. The possible mechanism of incorporation of N. pachyderma into the ice is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号