首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinetics of refolding of ribonuclease A were monitored by the return of catalytic activity and inhibitor binding at -15 degrees C in 35% methanol cryosolvent at pH* 3.0 and 6.0. Catalytic activity was measured with cytidine 2',3'-cyclic monophosphate as substrate; inhibitor binding was determined with the competitive inhibitor cytidine 2'-monophosphate. Biphasic kinetics were observed at pH* 3.0 for both return of catalytic activity and inhibitor binding. At pH* 6.0 the rate of return of catalytic activity was monophasic, whereas that of inhibitor binding was biphasic. For both inhibitor binding and catalytic activity one of the observed rates was pH-dependent. Full return of catalytic activity was obtained at the completion of the refolding process. The observations are interpreted in terms of two parallel pathways of refolding for slow-refolding ribonuclease, with several native-like, partially folded intermediate states on the minor slow-refolding pathway. Of particular note is the presence of at least one such species that has inhibitor-binding capacity but not catalytic activity. This may be rationalized in terms of the known native structure. In addition, an intermediate is postulated which has the incorrect Pro-93 conformation and only partial catalytic activity (42% of the native). The slowest observed transient is attributed to the isomerization of this proline residue and return of full catalytic activity.  相似文献   

2.
The kinetics of refolding of ribonuclease A have been measured at -15 degrees C by monitoring the intrinsic fluorescence and absorbance signals from the six tyrosine residues. For each probe multiphasic kinetics were observed. The burial of tyrosine residues, as determined by the change in absorbance at 286 nm, revealed four phases, whereas the kinetics of refolding monitored by fluorescence revealed only two phases. The rates of the transients detected by fluorescence were independent of pH. One of the faster transients detected by delta A286 involved a decrease in absorbance, which is consistent with solvent exposure, rather than burial, and suggests the possibility of an abortive partially folded intermediate in the earlier stages of folding. Double-jump unfolding assays were used to follow the buildup and decay of an intermediate in the refolding reaction at -15 degrees C. At both pH* 3.0 and pH* 6.0 the maximum concentration of the intermediate was 25-30% of the total protein. The existence of a second pathway of slow folding was inferred from the difference in rate of formation of native enzyme and breakdown of the observed intermediate, and by computer simulations. In addition, the unfolding assay demonstrated that 20% of the unfolded protein was converted to native at a much faster rate, consistent with observations in aqueous solution that 80% of unfolded ribonuclease A consists of slow-folding species. Kinetics and amplitude data from these and other refolding experiments with different probes were used to develop possible models for the pathway of refolding. The simplest system consistent with the results for the slow-refolding species involves two parallel pathways with multiple intermediates on each of them. Several independent lines of evidence indicate that about 30% of the unfolded state refolds by the minor pathway, in which the slowest observed phase is attributed to the isomerization of Pro-93. The major pathway involves 50% of the unfolded state; the reason why it refolds slowly is not apparent. A native-like intermediate is formed considerably more rapidly in the major slow-refolding pathway, compared to the minor pathway.  相似文献   

3.
The intermediates with one, two, three or four disulphide bonds which accumulate during unfolding of native ribonuclease and refolding of the reduced protein have been trapped by rapid alkylation with iodoacetate and separated by ionexchange chromatography. They have been characterized to varying extents by their enzymic activity, electrophoretic mobility through polyacrylamide gels, disulphide bonds between cysteine residues, the environments of the six tyrosine residues as indicated by ultraviolet absorption and fluorescence spectra, interaction with antibodies directed against either the trapped unfolded reduced protein or the native folded protein, and for the disruption by urea of any stable conformation producing a change in molecular shape.Correctly refolded ribonuclease was indistinguishable from the original native protein, but virtually all the intermediates with up to four disulphide bonds formed directly from the reduced protein were enzymically inactive and unfolded by these criteria. Unfolding of native ribonuclease was an all-or-none transition to the fully reduced protein, with no accumulation of disulphide intermediates. The intermediates in refolding are separated from the fully folded state by the highest energy barrier in the folding transition; they may be considered rapidly interconvertible, relatively unstable microstates of the unfolded protein. The measured elements of the final conformation are not acquired during formation of the first three disulphide bonds, but appear simultaneously with formation of the fourth native disulphide bond.These observations with ribonuclease are qualitatively similar to those made previously in greater detail with pancreatic trypsin inhibitor and suggest a possible general pattern for the kinetic process of protein unfolding and refolding.  相似文献   

4.
Previous attempts to determine the distribution of ice in frozen tissues at high sub-zero temperatures generally called for the further cooling of the tissues in question to facilitate freeze-drying, freeze-substitution, and freeze-fracture replication. Direct cryomicroscopic determinations, free from uncertainties stemming from changes in sample temperature could, it seemed, only be made in certain special cases. We have presented an isothermal “freeze-fixation” procedure designed to permit, instead, the postthaw retention of the freezing pattern and the conventional processing, afterward, of the thawed specimen. The method demands the exposure of the frozen tissues to fixative solutions incapable of dissolving ice. Frozen specimens are immersed in aqueous fixative solutions prepared in each instance (1) to freeze at a temperature equal to that at which fixation is to be conducted, (2) to contain quantities of finely divided ice sufficient to guarantee the maintenance of a constant water activity. Frozen frog and rat hearts and skeletal muscle tissues were exposed to formaldehyde, formaldehyde/ glutaraldehyde, and glutaraldehyde solutions at ?2, ?5, and ?10 °C, the temperatures being maintained in each case to ± 0.1 °C, or better. Tissues withdrawn at intervals were thawed, postfixed, dehydrated, embedded, and sectioned. The sections demonstrated the retention, after thawing, of structural features characteristic of the frozen state. The small hearts we exposed to formaldehyde were fixed throughout in 3 hr at ?2 ° and in 20 hr at ?5 °C. The action of osmium tetroxide was investigated. The method appears to be well-suited to numerous experimental applications.  相似文献   

5.
Cytochrome oxidase forms two distinctive compounds with oxygen at --105 and --90 degrees C, one appears to be oxycytochrome oxidase (Compound A) and the other peroxycytochrome oxidase (Compound B). The functional role of compound B in the oxidation of cytochrome c has been examined in a variety of mitochondrial preparations. The rate and the extent of the reaction have been found to be dependent upon the presence of a fluid phase in the vicinity of the site of the reaction of cytochrome c and cytochrome oxidase. The kinetics of cytochrome c oxidation and of the slowly reacting component of cytochrome oxidase are found to be linked to one another even in cytochrome c depleted preparations, but under appropriate conditions, especially low temperatures, the oxidation of cytochrome c precedes that of this component of cytochrome oxidase. Based upon the identification of the slowly reacting components of cytochrome oxidase with cytochrome c, various mechanisms are considered which allow cytochrome c to be oxidized without the intervention of cytochrome a at very low temperatures, and tunneling seems an appropriate mechanism.  相似文献   

6.
7.
Microbial metabolic activity occurs at subzero temperatures in permafrost, an environment representing ∼25% of the global soil organic matter. Although much of the observed subzero microbial activity may be due to basal metabolism or macromolecular repair, there is also ample evidence for cellular growth. Unfortunately, most metabolic measurements or culture-based laboratory experiments cannot elucidate the specific microorganisms responsible for metabolic activities in native permafrost, nor, can bulk approaches determine whether different members of the microbial community modulate their responses as a function of changing subzero temperatures. Here, we report on the use of stable isotope probing with 13C-acetate to demonstrate bacterial genome replication in Alaskan permafrost at temperatures of 0 to −20 °C. We found that the majority (80%) of operational taxonomic units detected in permafrost microcosms were active and could synthesize 13C-labeled DNA when supplemented with 13C-acetate at temperatures of 0 to −20 °C during a 6-month incubation. The data indicated that some members of the bacterial community were active across all of the experimental temperatures, whereas many others only synthesized DNA within a narrow subzero temperature range. Phylogenetic analysis of 13C-labeled 16S rRNA genes revealed that the subzero active bacteria were members of the Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes and Proteobacteria phyla and were distantly related to currently cultivated psychrophiles. These results imply that small subzero temperature changes may lead to changes in the active microbial community, which could have consequences for biogeochemical cycling in permanently frozen systems.  相似文献   

8.
9.
10.
The self-heated thermistor technique was used to measure the thermal conductivity and thermal diffusivity of biomaterials at low temperatures. Thermal standards were selected to calibrate the system at temperatures from -10 degrees C to -70 degrees C. The thermal probes were constructed with a convection barrier which eliminates convection inside liquid samples of low viscosity, without affecting the conductivity and diffusivity results. Using this technique, the thermal conductivity and diffusivity of two organ perfusates (HP5 and HP5 + 2M glycerol), one kidney phantom (a low ionic strength gel), as well as rabbit kidney cortex have been measured from -10 degrees C to -70 degrees C.  相似文献   

11.
Qin Z  Hu D  Shimada L  Nakagawa T  Arai M  Zhou JM  Kihara H 《FEBS letters》2001,507(3):299-302
Refolding of bovine beta-lactoglobulin was studied by stopped-flow circular dichroism at subzero temperatures. In ethylene glycol 45%-buffer 55% at -15 degrees C, the isomerization rate from the kinetic intermediate rich in alpha-helix to the native state is approximately 300-fold slower than that at 4 degrees C in the absence of ethylene glycol, whereas the initial folding is completed within the dead time of the stopped-flow apparatus (10 ms). At -28 degrees C, we observed at least three phases; the fastest process, accompanied by an increase of alpha-helix content, is completed within the dead time of the stopped-flow apparatus (10 ms), the second phase, accompanied by an increase of alpha-helix content with the rate of 2 s(-1), and the third phase, accompanied by a decrease of alpha-helix content. This last phase, corresponding to the isomerization process at -15 degrees C described above, was so slow that we could not monitor any changes within 4 h. Based on the findings above, we propose that rapid alpha-helix formation and their concurrent collapse are common even in proteins rich in beta-structure in their native forms.  相似文献   

12.
Several reactions of the cytochrome P450 multi-step cycle have been studied by fast light activation combined with subzero temperatures. A flash device was adapted to an Aminco-Chance DW 2 spectrophotometer equipped for subzero temperature thermostatisation. The first electron can be introduced into the cycle by non specific reducing agents such as reduced flavin mononucleotide (FMNH2) or methylviologen radical (MV.). This first reduction remains a fast process even at subzero temperatures. The oxy-compound Fe2+-O2 can thus be formed either directly from Fe2+ or via the photodissociation of the carboxy-ferro adduct. Fe2+-O2 is stable at subzero temperatures towards spontaneous autoxidation as well as further reduction by FMNH2 or MW.. In addition, the recombination of CO after flash photodissociation of Fe2+-CO was used to study in more details the specific behaviors of the purified microsomal cytochrome.  相似文献   

13.
We have developed a simple enzymatic procedure for evaluation of antisera reactivity against the large molecular forms of gastrin and cholecystokinin (CCK). The procedure can be used for radioimmunochemical quantitation of the precursor molecules. The different molecular forms of gastrin or CCK in tissue extracts or plasma were separated by gel chromatography. The concentration of each form was then measured with 17 different antisera before and after tryptic cleavage. The ratio between the molar concentrations before and after tryptic cleavage varied from 0.32 to 1.00. Such variation can explain the variable hormone concentrations in serum and tissue measured with different radioimmunoassays. The present procedure can be performed with any biological fluid containing the precursor forms. It does not require the large molecular forms in pure state. In principle the procedure can be used for quantitation of all peptide precursors.  相似文献   

14.
15.
The water of hydration in myoglobin crystals and solutions was studied at subzero temperatures by calorimetry and infrared spectroscopy (ir). For comparison we also investigated glycine, DL-alanine and DL-valine solutions. The hydration water remains amorphous at low temperatures. We find a broad glass transition between 180 and 270 K depending on the degree of hydration. The ice component shows a noncolligative melting point depression that is attributed to a finite conformational flexibility. The ir spectrum and the specific heat of water in myoglobin crystals was determined for the first time between 180 and 290 K. The glass transition in crystals is qualitatively similar to what is found in amorphous samples at the same water content. These data are compared with M?ssbauer experiments and dielectric relaxation of water in myoglobin crystals. The similar temperature dependencies suggest a cross correlation between structural fluctuations and the thermal motion of crystal water. A hydrogen bond network model is proposed to explain these features. The essential ingredients are cooperativity and a distribution of hydrogen-bonded clusters.  相似文献   

16.
17.
18.
19.
The kinetics of formation of the asymmetric carbonmonoxyhemoglobin hybrid (alpha beta)A(alpha beta)C from the parent molecules alpha 2 beta 2A and alpha 2 beta 2C have been studied by electrophoresis at subzero temperatures (down to -40 degrees C) using as supporting media gels of acrylamide/methylacrylate in dimethyl sulfoxide/water mixtures. It has been found that in these media the rate of hybrid formation is markedly affected by pH and decreases by an order of magnitude between pH 7.3 and 8.3. At pH greater than 10, t = -40 degrees C, the hybrid between alpha 2 beta 2A and alpha 2 beta 2C is stable for several hours. A rapid thermal quenching of a mixture of alpha 2 beta 2A and alpha 2 beta 2C prevented hybrid formation during the time required to separate the 2 molecules.  相似文献   

20.
A mathematical model is developed for the calculation of the kinetics of water loss from cells at subzero centigrade temperatures. In this model it is assumed that the cell surface membrane is permeable to water only, the protoplasm is a nonideal solution, the cells are spherical, and during the cooling process the cell temperature is not uniform inside the cell. It is also assumed that because of water loss due to cooling process the cell volume and the cell surface area reduce and the reductions in surface area and volume of the cell are functions of the amount of water loss from the cell. Based on this model, and for different conditions, the fractions of supercooled intracellular water remaining in the cells at various temperatures are calculated.It is shown that for cooling cells at subzero centigrade temperatures. (1) the consideration of Clausius-Clapeyron equation for vapor pressures of water and ice, instead of the exact vapor pressure relations, may produce errors in the prediction of the amount of water loss from the cells at high cooling rates only, (2) the assumption of intact cells will produce considerable deviation in the prediction of water loss from the cells as compared to the more realistic assumption of shrinkable cells, (3) the nonideality of protoplasm solution is very effective on the prediction of the amount of water loss from the cells, and (4) the assumption of uniform-temperature cells during the cooling process may be erroneous only for cells with small fractions of water in their protoplasms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号