首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Nineteen Burkholderia cepacia-like isolates of human and environmental origin could not be assigned to one of the seven currently established genomovars using recently developed molecular diagnostic tools for B. cepacia complex bacteria. Various genotypic and phenotypic characteristics were examined. The results of this polyphasic study allowed classification of the 19 isolates as an eighth B. cepacia complex genomovar (Burkholderia anthina sp. nov.) and to design tools for its identification in the diagnostic laboratory. In addition, new and published data for Burkholderia pyrrocinia indicated that this soil bacterium is also a member of the B. cepacia complex. This highlights another potential source for diagnostic problems with B. cepacia-like bacteria.  相似文献   

2.
Previous studies have identified specific Burkholderia cepacia complex strains that are common to multiple persons with cystic fibrosis (CF). Such so-called epidemic strains have an apparent enhanced capacity for inter-patient spread and reside primarily in Burkholderia cenocepacia (formerly B. cepacia complex genomovar III). We sought to identify strains from B. cepacia complex species other than B. cenocepacia that are similarly shared by multiple CF patients. We performed genotype analysis of 360 recent sputum culture isolates from 360 persons residing in 29 cities by using repetitive extragenic palendromic polymerase chain reaction (rep-PCR) and pulsed field gel electrophoresis. The results indicate that sharing of a common Burkholderia multivorans strain occurs relatively infrequently; however, several small clusters of patients infected with the same strain were identified. A cluster of seven patients infected with the same B. cepacia (genomovar I) strain was found. We also identified a large group of 28 patients receiving care in the same treatment center and infected with the same Burkholderia dolosa strain. These observations suggest that B. cepacia complex strains in species other than B. cenocepacia may be spread among CF patients.  相似文献   

3.
Burkholderia cepacia is a 'complex' in which seven genomic species or genomovars have so far been identified. It appears that all seven B. cepacia genomovars are capable of causing infections in vulnerable persons; in particular, the importance of Burkholderia multivorans (genomovar II) and B. cepacia genomovar III among cystic fibrosis isolates, especially epidemic ones, has been emphasized. In order to acquire a better comprehension of the genomovar composition of environmental populations of B. cepacia, 120 strains were isolated from the rhizosphere of maize plants cultivated in fields located in northern, central and southern Italy. The identification of the different genomovars was accomplished by a combination of molecular polymerase chain reaction (PCR)-based techniques, such as restriction fragment length polymorphism (RFLP) analysis of 16S rDNA (ARDRA), genomovar-specific PCR tests and RFLP analyses based on polymorphisms in the recA gene whole-cell protein electrophoresis. ARDRA analysis allowed us to distinguish between all B. cepacia genomovars except B. cepacia genomovar I, B. cepacia genomovar III and Burkholderia ambifaria (genomovar VII). The latter genomovars were differentiated by means of recA PCR tests and RFLP analyses. Among the rhizospheric isolates of B. cepacia, we found only B. cepacia genomovar I, B. cepacia genomovar III, Burkholderia vietnamiensis (genomovar V) and B. ambifaria. B. cepacia genomovars I and III and B. ambifaria were recovered from all three fields, whereas B. vietnamiensis was detected only in the population isolated from the field located in central Italy. Among strains isolated from northern and southern Italy, the most abundant genomovars were B. ambifaria and B. cepacia genomovar III respectively; in contrast, the population isolated in central Italy showed an even distribution of strains among genomovars. These results indicate that it is not possible to differentiate clinical and environmental strains, or pathogenic and non-pathogenic strains, of the B. cepacia complex simply on the basis of genomovar status, and that the environment may serve as a reservoir for B. cepacia genomovar III infections in vulnerable humans.  相似文献   

4.
AIMS: To study the genotypic identification and characterization of the 119 Burkholderia cepacia complex (Bcc) strains recovered from clinical and environmental sources in Japan and Thailand. METHODS AND RESULTS: Based on the results of analysis by 16S rDNA RFLP generated after digestion with DdeI, the Bcc strains were differentiated into two patterns: pattern 1 (including Burkholderia vietnamiensis) and pattern 2 (including B. cepacia genomovar I, Burkholderia cenocepacia and Burkholderia stabilis). All strains belonged to pattern 2 except for one strain. In the RFLP analysis of the recA gene using HaeIII, strains were separated into eight patterns designated as A, D, E, G, H, I, J and K, of which pattern K was new. Burkholderia cepacia epidemic strain marker (BCESM) encoded by esmR [corrected] and the pyrrolnitrin biosynthetic locus encoded by prnC were present in 22 strains (18%) and 88 strains (74%) from all sources, respectively. All esmR-positive [corrected] strains belonged to B. cenocepacia, whereas most prnC-positive strains belonged to B. cepacia genomovar I. CONCLUSIONS: Strains derived from clinical sources were assigned to B. cepacia genomovar I, B. cenocepacia, B. stabilis and B. vietnamiensis. The majority of Bcc strains from environmental sources (77 of a total 95 strains) belonged to B. cepacia genomovar I, whereas the rest belonged to B. cenocepacia. On the basis of genomovar-specific PCR and prnC RFLP analysis, strains belonging to recA pattern K were identified as B. cepacia genomovar I. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides the genotypic identification of a collection of the Bcc strains from Japan and Thailand. RFLP analysis of the prnC gene promises to be a useful method for differentiating Burkholderia pyrrocinia from B. cepacia genomovar I strains.  相似文献   

5.
AIMS: To investigate the relationship between genomovar status and carbon source utilization, antibiotic susceptibility and growth ability on selective media of 142 clinical and environmental Burkholderia cepacia complex (Bcc) isolates belonging to all nine genomovars. METHODS AND RESULTS: Carbon source utilization and growth on selective media were tested by agar plate multipoint inoculation. Antimicrobial minimum inhibitory concentration (MIC) values were determined by agar dilution. Of all carbon sources, l-arabinose was most frequently utilized, supporting growth of 90% of all isolates. Burkholderia cepacia genomovar VI failed to utilize azelaic acid, penicillin G, phtalate, salicin and tryptamine. Overall, B. vietnamiensis and B. anthina were most susceptible and B. cepacia genomovar VI most resistant to antimicrobial agents. Burkholderia cepacia selective agar (BCSA) and the Mast B. cepacia medium supported growth of Bcc isolates most efficiently. CONCLUSIONS: This study demonstrates phenotypic heterogeneity within the Bcc. Some trends can be observed at the genomovar level, but only B. cepacia genomovar VI could be differentiated unambiguously on the basis of its inability to grow on PCAT. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides an update on some differential phenotypic characteristics of all nine Bcc genomovars.  相似文献   

6.
Using probes constructed from Ralstonia solanacearum and Burkholderia pseudomallei, putative type III secretion (TTS) genes were identified in Burkholderia cepacia J2315 (genomovar III). A cosmid clone containing DNA with homology to five TTS genes was sub-cloned and regions were sequenced in order to design oligonucleotides for polymerase chain reaction assays. These indicated that two putative TTS genes (bcscQ and bcscV) were present in all members of the B. cepacia complex with the exception of strains from genomovar I. Southern blot assays confirmed this observation, suggesting that the lack of a TTS gene cluster may define a major difference between B. cepacia genomovar I and other members of the B. cepacia complex, including genomovar III. In contrast to TTS gene clusters in other bacteria, a putative gene homologous to the virB1 gene of Brucella suis was located directly downstream of bcscQR.  相似文献   

7.
The Burkholderia cepacia complex comprises at least nine phylogenetically related genomic species (genomovars) which cause life-threatening infection in immunocompromised humans, particularly individuals with cystic fibrosis or chronic granulomatous disease. Prior to recognition that 'B. cepacia' comprise multiple species, in vitro studies revealed that the lipopolysaccharide (LPS) of these Gram-negative bacteria is strongly endotoxic. In this study, we used 117 B. cepacia complex isolates to determine if there is a correlation between O-antigen serotype and genomovar status. Isolates were also tested for their ability to act as bacterial hosts for the LPS-binding bacteriophages NS1 and NS2. The absence of genomovar II (Burkholderia multivorans) in 'historical B. cepacia' isolates was notable. Neither O-serotype nor phage susceptibility correlated with genomovar status. We conclude that variability in LPS may contribute to the success of these highly adaptable bacteria as human pathogens.  相似文献   

8.
Eleven strains of Burkholderia cepacia were isolated directly from clinical specimens: 10 from sputum of cystic fibrosis patients, and one from a vaginal swab. They were biochemically identified using API20NE and confirmed by a PCR-based assay. The genomovar characterisation obtained by specific PCR amplification revealed seven strains belonging to genomovar I, three belonging to genomovar IIIA and one belonging to genomovar IV. All isolates were also typed by ribotyping and random amplification of polymorphic DNA analysis. Some of the characterised strains were examined for the ability to produce exopolysaccharides, with the aim of correlating the genomovar with the exopolysaccharide structure. The polysaccharides were analysed by means of methylation analysis and 1H-NMR spectroscopy in order to determine structural similarities. It was shown that different strains are capable of producing chemically different polysaccharides.  相似文献   

9.
Ten Bifidobacterium strains, i.e., 6T3, 64T4, 79T10, 80T4, 81T8, 82T1, 82T10, 82T18, 82T24, and 82T25, were isolated from mantled guereza (Colobus guereza), Sumatran orangutan (Pongo abeli), silvery marmoset (Mico argentatus), golden lion tamarin (Leontopithecus rosalia), pied tamarin (Saguinus bicolor), and common pheasant (Phaisanus colchinus). Cells are Gram-positive, non-motile, non-sporulating, facultative anaerobic, and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on the core genome sequences revealed that isolated strains exhibit close phylogenetic relatedness with Bifidobacterium genus members belonging to the Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium pullorum, and Bifidobacterium tissieri phylogenetic groups. Phenotypic characterization and genotyping based on the genome sequences clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, B. phasiani sp. nov. (6T3 = LMG 32224T = DSM 112544T), B. pongonis sp. nov. (64T4 = LMG 32281T = DSM 112547T), B. saguinibicoloris sp. nov. (79T10 = LMG 32232T = DSM 112543T), B. colobi sp. nov. (80T4 = LMG 32225T = DSM 112552T), B. simiiventris sp. nov. (81T8 = LMG 32226T = DSM 112549T), B. santillanense sp. nov. (82T1 = LMG 32284T = DSM 112550T), B. miconis sp. nov. (82T10 = LMG 32282T = DSM 112551T), B. amazonense sp. nov. (82T18 = LMG 32297T = DSM 112548T), pluvialisilvae sp. nov. (82T24 = LMG 32229T = DSM 112545T), and B. miconisargentati sp. nov. (82T25 = LMG 32283T = DSM 112546T) are proposed as novel Bifidobacterium species.  相似文献   

10.
We examined the diversity of transconjugants that acquired the catabolic plasmids pJP4 or pEMT1, which encode degradation of 2,4-dichlorophenoxyacetic acid (2,4-D), in microcosms with agricultural soil inoculated with a donor strain (Dejonghe, W., Goris, J., El Fantroussi, S., H?fte, M., De Vos, P., Verstraete, W., and Top, E. M. Appl. Environ. Microbiol. 2000, p. 3297-3304). Using repetitive element PCR fingerprinting, eight different rep-clusters and six separate isolates could be discriminated among 95 transconjugants tested. Representative isolates were identified using 16S rDNA sequencing, cellular fatty acid analysis, whole-cell protein analysis and/or DNA-DNA hybridisations. Plasmids pJP4 and pEMT1 appeared to have a similar transfer and expression range, and were preferably acquired and expressed in soil by indigenous representatives of Ralstonia and Burkholderia. Two rep-clusters were shown to represent novel Burkholderia species, for which the names Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. are proposed. When easily degradable carbon sources were added together with the plasmid-bearing donor strain, also a significant proportion of Stenotrophomonas maltophilia isolates were found. The transconjugant collections isolated from A- (0-30 cm depth) and B-horizon (30-60 cm depth) soil were similar, except for B. terricola transconjugants, which were only isolated from the B-horizon.  相似文献   

11.
A survey of Burkholderia cepacia complex (Bcc) species was conducted in agricultural fields within Hangzhou, China. Out of the 251 bacterial isolates recovered on the selective media from the rhizosphere of rice and maize, 112 of them were assigned to Bcc by PCR assays. The species composition of the Bcc isolates was analyzed by a combination of recA-restriction fragment length polymorphism assays, species-specific PCR tests and recA gene sequencing. The results revealed that the majority belong to B. cepacia, Burkholderia cenocepacia recA lineage IIIB, Burkholderia vietnamiensis and Burkholderia pyrrocinia. Burkholderia cenocepacia and B. vietnamiensis dominated the rhizosphere of maize and rice, respectively, indicating that species composition and abundance of Bcc may vary dramatically in different crop rhizospheres. In addition, one isolate (R456) formed a single discrete cluster within the phylogenetic analysis of the Bcc recA gene, and it may belong to a new genomovar.  相似文献   

12.
A polyphasic taxonomic study involving DNA-DNA hybridization, whole-cell protein electrophoresis, and 16S ribosomal DNA sequence analysis revealed that a group of Burkholderia cepacia-like organisms isolated from the rhizosphere or tissues of maize, wheat, and lupine belong to B. cepacia genomovar III, a genomic species associated with "cepacia syndrome" in cystic fibrosis patients. The present study also revealed considerable protein electrophoretic heterogeneity within this species and demonstrated that the B. cepacia complex consists of two independent phylogenetic lineages.  相似文献   

13.
A polar multitrichous gram-negative motile rod, EY 3383, originally identified as Burkholderia thailandensis, revealed a DNA-DNA reassociation rate of 36.7%, under stringent conditions, with the type strain of B. thailandensis, despite the 16S rDNA homology value between two type strains being as high as 97.9%. The strain was clearly differentiated from the type strain of B. thailandensis by physiological, bio-chemical, and nutritional characteristics, without significant difference in cellular fatty acid and lipid composition. Based on the results of 16S rDNA sequence analysis, DNA-DNA hybridization and phenotypic characterization, Burkholderia uboniae sp. nov. is herein proposed. The type strain is NCTC 13147=EY 3383, isolated on 8 December 1989 from surface soil along the roadside in Ubon Ratchathani, Thailand. Major respiratory quinone is ubiquinone-8(Q8). G+C content of DNA is 69.71%.  相似文献   

14.
Isolation of Burkholderia cepacia complex genomovars from waters   总被引:2,自引:0,他引:2  
The aim of this study was to develop a selective enrichment broth as an aid for the isolation of Burkholderia cepacia complex (Bcc) bacteria from water. To allow growth of all nine genomovars, mixtures of two carbon sources had to be used, i.e. L-arabinose/D-cellobiose or L-arabinose/L-threonine. Selectivity was provided by polymyxin B and 9-chloro-9-(4-diethylaminophenyl)-10-phenylacridan (C-390). Following enrichment, Bcc bacteria were isolated on a diagnostic O/F agar supplemented with gentamicin. A preliminary bio-diversity study on 28 surface waters yielded five different genomovars, i.e. B. cepacia (genomovar I), B. multivorans, B. cenocepacia, B. vietnamiensis and B. anthina. Drinking waters did not contain Bcc bacteria. However, the genomovar pattern from a given sample varied with the enrichment broth used.  相似文献   

15.
Spectra of five isolates (LMG 28358T, LMG 29879T, LMG 29880T, LMG 28359T and R-53705) obtained from gut samples of wild bumblebees of Bombus pascuorum, Bombus lapidarius and Bombus terrestris were grouped into four MALDI-TOF MS clusters. RAPD analysis revealed an identical DNA fingerprint for LMG 28359T and R-53705 which also grouped in the same MALDI-TOF MS cluster, while different DNA fingerprints were obtained for the other isolates.Comparative 16S rRNA gene sequence analysis of the four different strains identified Gilliamella apicola NCIMB 14804T as nearest neighbour species. Average nucleotide identity values of draft genome sequences of the four isolates and of G. apicola NCIMB 14804T were below the 96% threshold value for species delineation and all four strains and G. apicola NCIMB 14804T were phenotypically distinct. Together, the draft genome sequences and phylogenetic and phenotypic data indicate that the four strains represent four novel Gilliamella species for which we propose the names Gilliamella intestini sp. nov., with LMG 28358T as the type strain, Gilliamella bombicola sp. nov., with LMG 28359T as the type strain, Gilliamella bombi sp. nov., with LMG 29879T as the type strain and Gilliamella mensalis sp. nov., with LMG 29880T as the type strain.  相似文献   

16.
Chaudhary HJ  Peng G  Hu M  He Y  Yang L  Luo Y  Tan Z 《Microbial ecology》2012,63(4):813-821
Thirty-three endophytic diazotrophs were isolated from surface-sterilized leaves, stem, and roots of wild rice Oryza alta. The SDS-PAGE profile of total protein and insertion sequence-based polymerase chain reaction (IS-PCR) fingerprinting grouped the isolates into four clusters (I-IV). The 16S rRNA gene sequence homology of the representative strains B21, B31, B1, and B23 of clusters I, II, III, and IV were assigned to Pseudomonas oleovorans (99.2% similarity), Burkholderia fungorum (99.4% similarity), Enterobacter cloacae (98.9% similarity), and Acinetobacter johnsonii (98.4% similarity), respectively. The results showed wide genetic diversity of the putative diazotrophic strains of the wild rice, O. alta, and the strains of cluster IV are the first report of nitrogen-fixing Acinetobacter species. The cell size, phenotypic characters, total protein profile, genomic DNA fingerprinting, DNA-DNA hybridization, and antibiotic resistance differentiated strain B23(T) from its closest relatives A. johnsonii LMG999(T) and Acinetobacter haemolyticus LMG996(T). The DNA-DNA hybridization also distinguished the strain B23(T) from the closely related Acinetobacter species. Based on these data, a novel species, Acinetobacter oryzae sp. nov., and strain B23(T) (=LMG25575(T)?=?CGMCC1.10689(T)) as the type strain were proposed.  相似文献   

17.
Two Pseudomonas-like yellow-orange-pigmented non-fluorescent denitrifying strains KMM 235 and KMM 1447T were isolated from marine ascidian specimens and investigated by a polyphasic approach to clarify their taxonomic status. On the basis of 16S rDNA gene sequence data the new isolates clustered with the Pseudomonas stutzeri species group with sequence similarities of >98%. The results of DNA-DNA hybridization and biochemical characterization showed genetic and phenotypic distinction between strains KMM 235 and KMM 1447T and from the other validly described Pseudomonas species. Strain KMM 235 was found to be closely related to the type strain of Pseudomonas stutzeri in their phenotypic and genetic characteristics and represented, probably, a new P. stutzeri genomovar. It is proposed that strain KMM 1447T be classified as a new species of the genus Pseudomonas, Pseudomonas xanthomarina sp. nov., with the type strain KMM 1447T (=JCM 12468T=NRIC 0617T=CCUG 46543T).  相似文献   

18.
Strain AC1100 is well-known for its ability to degrade a variety of recalcitrant xenobiotics, including 2,4,5-trichlorophenoxyacetic acid. We performed a polyphasic-taxonomic study to determine its taxonomic position. The G+C content of strain AC1100 was 62.6 mol%. On the basis of 16S rRNA gene sequence similarity, strain AC1100 belonged to the b-Proteobacteria and was most closely related to Burkholderia fungorum (98.3% similarity). DNA-DNA hybridisations, comparison of protein profiles, cellular fatty acid analysis and biochemical tests allowed genotypic and phenotypic differentiation of strain AC1100 from other Burkholderia species. Our data show that strain AC1100 represents a novel species for which the name Burkholderia phenoliruptrix sp. nov. is proposed. The type strain is AC1100T (= LMG 22037T = CCUG 48558T).  相似文献   

19.
A fast screening method was developed to assess the pathogenicity of a diverse collection of environmental and clinical Burkholderia cepacia complex isolates in the nematode Caenorhabditis elegans. The method was validated by comparison with the standard slow-killing assay. We observed that the pathogenicity of B. cepacia complex isolates in C. elegans was strain-dependent but species-independent. The wide range of observed pathogenic phenotypes agrees with the high degree of phenotypic variation among species of the B. cepacia complex and suggests that the taxonomic classification of a given strain within the complex cannot predict pathogenicity.  相似文献   

20.
Some strains of the Burkholderia cepacia complex, including the ET12 lineage, have been implicated in epidemic spread amongst cystic fibrosis (CF) patients. Suppression-subtractive hybridisation was used to identify genomic regions within strain J2315 (ET12 lineage; genomovar IIIA) that were absent from a non-transmissible genomovar IIIB strain. Sequence data from 15 subtracted clones were used to interrogate the genome sequence of strain J2315 and identify genomic regions incorporating the subtracted sequences. Many of the genomic regions displayed abnormally low GC content and similarity to sequences implicated in gene transfer. The distribution of three subtracted regions amongst members of the B. cepacia complex varied. A large cluster of genes with strong sequence similarity to capsular production genes from Burkholderia mallei and other bacterial pathogens was identified. This genomic island was detected in some but not all representatives of genomovar IIIA, two out of four genomovar I strains, and one of two strains of Burkholderia multivorans, but was not detected in Burkholderia stabilis, Burkholderia vietnamiensis, genomovar VI or Burkholderia. ambifaria. The polysaccharide production gene cluster of strain J2315 carries an IS 407-like sequence within the gene similar to B. mallei wcbO that is lacking in other ET12 isolates. Genes from this cluster are expressed during exponential growth in broth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号