首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
D E Hill  G G Hammes 《Biochemistry》1975,14(2):203-213
Equilibrium binding studies of the interaction of rabbit muscle phosphofructokinase with fructose 6-phosphate and fructose 1,6-bisphosphate have been carried out at 5 degrees in the presence of 1-10 mM potassium phosphate (pH 7.0 and 8.0), 5 mM citrate (pH 7.0), or 0.22 mm adenylyl imidodiphosphate (pH 7.0 and 8.0). The binding isotherms for both fructose 6-phosphate and fructose 1,6-bisphosphate exhibit negative cooperativity at pH 7.0 and 8.0 in the presence of 1-10 mM potassium phosphate at protein concentrations where the enzyme exists as a mixture of dimers and tetramers (pH 7.0) or as tetramers (pH 8.0) and at pH 7.0 in the presence of 5 mM citrate where the enzyme exists primarily as dimers. The enzyme binds 1 mol of either fructose phosphate/mol of enzyme monomer (molecular weight 80,000). When enzyme aggregation states smaller than the tetramer are present, the saturation of the enzyme with either ligand is paralleled by polymerization of the enzyme to tetramer, by an increase in enzymatic activity and by a quenching of the protein fluorescence. At protein concentrations where aggregates higher than the tetramer predominate, the fructose 1,6-bisphosphate binding isotherms are hyperbolic. These results can be quantitatively analyzed in terms of a model in which the dimer is associated with extreme negative cooperativity in binding the ligands, the tetramer is associated with less negative cooperativity, and aggregates larger than the tetramer are associated with little or no cooperativity in the binding process. Phosphate is a competitive inhibitor of the fructose phosphate sites at both pH 7.0 and 8.0, while citrate inhibits binding in a complex, noncompetitive manner. In the presence of the ATP analog adenylyl imidodiphosphate, the enzyme-fructose 6-phosphate binding isotherm is sigmoidal at pH 7.0, but hyperbolic at pH 8.0. The characteristic sigmoidal initial velocity-fructose 6-phosphate isotherms for phosphofructokinase at pH 7.0, therefore, are due to an heterotropic interaction between ATP and fructose 6-phosphate binding sites which alters the homotropic interactions between fructose 6-phosphate binding sites. Thus the homotropic interactions between fructose 6-phosphate binding sites can give rise to positive, negative, or no cooperativity depending upon the pH, the aggregation state of the protein, and the metabolic effectors present. The available data suggest the regulation of phosphofructokinase involves a complex interplay between protein polymerization and homotropic and heterotropic interactions between ligand binding sites.  相似文献   

2.
6-Phosphofructo-1-kinase (PFK) of rat placenta was purified to homogeneity with a recovery of 56% of the enzyme activity in the original extract. The purified enzyme is a tetramer and the Mr value of the subunit is 85000 ± 1500 as shown by gel filtration and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Considering the properties of the native rat placental PFK isoenzyme, it is clear that this tissue is a complex mixture of homotetramer and heterotetramer. Purified placenta PFK displayed little cooperativity at pH 7.0 with respect to fructose 6-phosphate and was markedly inhibited with high concentrations of ATP. The affinity of the enzyme for fructose 6-phosphate was increased by fructose 2,6-biphosphate. The purified enzyme was highly inhibited by citrate, whereas it was only slightly inhibited by phospho enolpyruvate. ADP, AMP and fructose 2,6-biphosphate showed little stimulation towards placental PFK. The present study suggests that the placental PFK is a relatively active enzymic form and it is also probably characterized with a high rate of glycolysis possibly because this tissue requires a high energy production for the development and maintenance of the fetus as the placenta tends to be a semipermeable membrane through which substances are exchanged between mother and fetus.  相似文献   

3.
1. Phosphofructokinase from camel liver was purified to homogeneity more than 3600-fold, and the yield of the preparation was 46%. 2.The sodium dodecyl sulphate-treated purified enzyme migrated as a single band in 10% polyacrylamide gel. 3. The enzyme is a tetramer, with a monomer Mr 90,000. 4. The regulatory properties of the purified enzyme from camel liver were studied at pH 7.0. 5. The enzyme displayed cooperativity with respect to fructose 6-phosphate and was inhibited by high concentrations of ATP. 6. The enzyme was also inhibited by citrate, phosphocreatine and 2,3-bisphosphoglycerate. 7. On the other hand, ADP, AMP, glucose 1,6-bisphosphate and fructose 2,6-bisphosphate were all found to be strong activators for camel liver phosphofructokinase.  相似文献   

4.
The positive effector 5′-AMP of yeast phosphofructokinase does not influence the binding of fructose 6-phosphate to the enzyme. Cibacron blue F3G-A considered an ATP analogue decreases the affinity of the enzyme to fructose 6-phosphate without exerting an effect on the cooperativity of fructose 6-phosphate binding. The peculiarities of the interactions of AMP and Cibacron blue with fructose 6-phosphate binding demonstrate compatibility of the allosteric kinetics with the binding behavior of the enzyme.  相似文献   

5.
Kinetic properties of spermine synthase from bovine brain.   总被引:4,自引:0,他引:4       下载免费PDF全文
Phosphofructokinase (EC 2.7.1.11) from a citric acid-producing strain of Aspergillus niger was partially purified by the application of affinity chromatography on Blue Dextran--Sepharose and the use of fructose 6-phosphate and glycerol as stabilizers in the working buffer. The resulting preparation was still impure, but free of enzyme activities interfering with kinetic investigations. Kinetic studies showed that the enzyme exhibits high co-operativity with fructose 6-phosphate, but shows Michaelis--Menten kinetics with ATP, which inhibits at concentrations higher than those for maximal activity. Citrate and phosphoenolpyruvate inhibit the enzyme; citrate increases the substrate (fructose 6-phosphate) concentration for half-maximal velocity, [S]0.5, and the Hill coefficient, h. The inhibition by citrate is counteracted by NH4+, AMP and phosphate. Among univalent cations tested only NH4+ activates by decreasing the [S]0.5 for fructose 6-phosphate and h, but has no effect on Vmax. AMP and ADP activate at low and inhibit at high concentrations of fructose 6-phosphate, thereby decreasing the [S]0.5 for fructose 6-phosphate. Phosphate has no effect in the absence of citrate. The results indicate that phosphofructokinase from A. niger is a distinct species of this enzyme, with some properties similar to those of the yeast enzyme and in some other properties resembling the mammalian enzyme. The results of determinations of activity at substrate and effector concentrations resembling the conditions that occur in vivo support the hypothesis that the apparent insensitivity of the enzyme to citrate during the accumulation of citric acid in the fungus is due to counteraction of citrate inhibition by NH4+.  相似文献   

6.
The behavior of mammalian phosphofructokinase on immobilized adenine nucleotides was investigated. Three different insolubilized ligands were compared using a pure rabbit muscle phosphofructokinase. N6-[(6-aminohexyl)-carbamoyl-methyl]-ATP-Sepharose bound at least 90 times more enzyme than either N6-(6-aminohexyl)-AMP-agarose or ATP-adipic acid hydrazide-Sepharose. The elution of phosphofructokinase from the ATP-Sepharose with various metabolites and combinations of metabolites was investigated. The enzyme is eluted specifically from N6-[(6-aminohexyl)-carbamoyl]-ATP-Sepharose with a mixture of 25 μm each of fructose 6-phosphate and ADP (±Mg2+). The enzyme is not eluted either with ATP (25 μm), fructose 1,6-diphosphate (1 mm), ADP (25 μm), fructose 6-phosphate (1 mm) alone, or with a mixture of fructose 1,6-diphosphate (25 μm) and ATP (25 μm). The recovery of bound enzyme was usually greater than 90%. A mixture of glucose 6-phosphate and ADP or a mixture of IDP and fructose 6-phosphate also elutes the enzyme, but the recovery with these eluants was only about 40%. It was concluded that the “dead-end” complex is the most effective in the elution. Using this method, phosphofructokinase has been prepared in an essentially homogeneous form from muscle and brain of rabbit and rat. The overall isolation procedure involves a high speed centrifugation of crude extracts which sediments phosphofructokinase as a pellet, followed with adsorption on N6-[(6-aminohexyl)-carbamoyl-methyl]-ATP-Sepharose and specific elution with the mixture of fructose 6-phosphate and ADP.  相似文献   

7.
Kinetic data have been collected suggesting that heterotropic activation by fructose 2,6-bisphosphate and AMP is a result not only of the relief of allosteric inhibition by ATP but is also the result of an increase in the affinity of phosphofructokinase for fructose 6-phosphate. Modification of the Ascaris suum phosphofructokinase at the ATP inhibitory site produces a form of the enzyme that no longer has hysteretic time courses or homotropic positive (fructose 6-phosphate) cooperativity or substrate inhibition (ATP) (Rao, G.S. J., Wariso, B.A., Cook, P.F., Hofer, H.W., and Harris, B.G. (1987a) J. Biol. Chem. 262, 14068-14073). This form of phosphofructokinase is Michaelis-Menten in its kinetic behavior but is still activated by fructose 2,6-bisphosphate and AMP and by phosphorylation using the catalytic subunit of cyclic AMP-dependent protein kinase (cAPK). Fructose 2,6-bisphosphate activates by decreasing KF-6-P by about 15-fold and has an activation constant of 92 nM, while AMP decreases KF-6-P about 6-fold and has an activation constant of 93 microM. Double activation experiments suggest that fructose 2,6-bisphosphate and AMP are synergistic in their activation. The desensitized form of the enzyme is phosphorylated by cAPK and has an increased affinity for fructose 6-phosphate in the absence of MgATP. The increased affinity results in a change in the order of addition of reactants from that with MgATP adding first for the nonphosphorylated enzyme to addition of fructose 6-phosphate first for the phosphorylated enzyme. The phosphorylated form of the enzyme is also still activated by fructose 2,6-bisphosphate and AMP.  相似文献   

8.
1. The properties of phosphofructokinase after its slight purification from the mucosa of rat jejunum were studied. 2. The enzyme is inhibited by almost 100% by an excess of ATP (1.6mm), with 0.2mm-fructose 6-phosphate. AMP, ADP, P(i) and NH(4) (+) at 0.2, 0.76, 1.0 and 2mm respectively do not individually prevent the inhibition of phosphofructokinase activity by 1.6mm-ATP with 0.2mm-fructose 6-phosphate to any great extent, but all of them together completely prevent the inhibition of phosphofructokinase by ATP. 3. One of the effects of high concentrations of ATP on the enzyme was to increase enormously the apparent K(m) value for the other substrate fructose 6-phosphate, and this increase is largely counteracted by the presence of AMP, ADP, P(i) and NH(4) (+). At low concentrations of ATP the above effectors individually decrease the concentration of fructose 6-phosphate required for half-maximum velocity and when present together they decrease it further, in a more than additive way. 4. When fructose 6-phosphate is present at a saturating concentration (5mm), 0.3mm-NH(4) (+) increases the maximum velocity of the reaction 3.3-fold; with 0.5mm-fructose 6-phosphate, 4.5mm-NH(4) (+) is required for maximum effect. The other effectors do not change the maximum reaction velocity. 5. The results presented here suggest that NH(4) (+), AMP, ADP and P(i) synergistically decrease the inhibition of phosphofructokinase activity at high concentrations of ATP by decreasing the concentration of fructose 6-phosphate required for half-maximum velocity. Such synergism among the effectors and an observed, low ;energy charge' [(ATP+(1/2)ADP)/(AMP+ADP+ATP)] in conjunction with the possibility of a relatively high NH(4) (+) and fructose 6-phosphate concentration in this tissue, may keep the mucosal phosphofructokinase active and uninhibited by ATP under aerobic conditions, thus explaining the high rate of aerobic glycolysis and the lack of Pasteur effect in this tissue.  相似文献   

9.
Regulation of Escherichia coli phosphofructokinase in situ   总被引:15,自引:0,他引:15  
The activity of E. coli phosphofructokinase in situ has been studied in cells permeabilized to its substrates, products and effectors by a toluene-freezing treatment. The in situ enzyme exhibits moderate cooperativity in respect to F6P (nH up to 2.0), rather low affinity for ATP (with Km up to 1 mM when saturated with F6P), activation by ADP, and inhibition, within the physiological range of concentrations, by high ATP and phosphoenolpyruvate. This behaviour of the enzyme in situ at concentrations of the effector metabolites as those reported in intact cells in glycolytic and gluconeogenic conditions could account for the changes of phosphofructokinase activity needed for metabolic regulation in vivo.  相似文献   

10.
An allosteric phosphofructokinase (PFK) was created by sequence manipulation of the nonallosteric enzyme from the slime mold Dictyostelium discoideum (DdPFK). Most amino acid residues proposed as important for catalytic and allosteric sites are conserved in DdPFK except for a few of them, and their reversion did not modify its kinetic behavior. However, deletions at the unique C-terminal extension of this PFK produced a markedly allosteric enzyme. Thus, a mutant lacking the last 26 C-terminal residues exhibited hysteresis in the time course, intense cooperativity (n(H) = 3.8), and a 200-fold decrease in the apparent affinity for fructose 6-phosphate (S(0.5) = 4500 microm), strong activation by fructose 2,6-bisphosphate (K(act) = 0.1 microm) and fructose 1,6-bisphosphate (K(act) = 40 microm), dependence on enzyme concentration, proton inhibition, and subunit association-dissociation in response to fructose 6-phosphate versus the nonhysteretic and hyperbolic wild-type enzyme (n(H) = 1.0; K(m) = 22 microm) that remained as a stable tetramer. Systematic deletions and point mutations at the C-tail region of DdPFK identified the last C-terminal residue, Leu(834), as critical to produce a nonallosteric enzyme. All allosteric mutants were practically insensitive to MgATP inhibition, suggesting that this effect does not involve the same allosteric transition as that responsible for fructose 6-phosphate cooperativity and fructose bisphosphate activation.  相似文献   

11.
The kinetic behaviour of human erythrocyte phosphofructokinase has been analyzed over a relative wide range of enzyme concentration (0.01 -- 1.7 mug/ml). The kinetic cooperativity which becomes apparent when the enzymic reaction rate is plotted versus the fructose 6-phosphate concentration decreases with increasing enzyme concentration. Simultaneously, a decrease of the half-saturation concentration for fructose 6-phosphate [S]0.5 is observed. Maximum velocity passes through a maximum at increasing enzyme concentrations. Sets of curves representing specific enzymic activity of phosphofructokinase versus enzyme concentration obtained at various fixed concentrations of fructose 6-phosphate and ATP are analyzed. The shapes of these curves are interpreted in terms of an association model of human erythrocyte phosphofructokinase, in which an inactive dimer (Mr 190000) and active multimers of the dimeric form are involved. The conclusion is drawn that the sigmoidal shape of the plots of the enzymic reaction rate versus fructose 6-phosphate concentration is partially caused by a displacement of the equilibrium between different states of association of phosphofructokinase to multimers by this substrate. On the other hand, the inhibition of the enzyme by high concentrations of ATP may be partially caused by a shift of this equilibrium to the state of the inactive dimer.  相似文献   

12.
Enterobacter hafniae and Aeromonas hydrophila ADPglucose synthetases were purified approximately 39-and 61-fold, respectively, over the crude extract. Both enzymes were heat stable at 60°C in the presence of inorganic phosphate. The molecular weights of both enzymes were approximately 200,000 which are similar to other enteric ADPglucose synthetases studied. Based on kinetic results obtained from the partially purified enzymes, the E. hafniae enzyme is activated twofold by phospho-enolpyruvate while the A. hydrophila enzyme is activated twofold by fructose 6-P and 1.5-fold by fructose 1,6 bis-phosphate. The E. hafniae enzyme activity is strongly inhibited by AMP and ADP and the inhibition can be partially reversed by P-enolpyruvate. ADP is the most effective inhibitor of the A. hydrophila enzyme and its inhibiton can be partially overcome by the presence of the activators fructose 6-P and fructose 1,6-P2. These kinetic results show that the allosteric properties of the E. hafniae enzyme are distinctly different from the ADPglucose synthetases of those previously studied from bacteria of the genus Enterobacter. Although the A. hydrophila enzyme is activated by fructose 1,6-P2, its allosteric properties are quite different than those observed for ADPglucose synthetase of the Enterobacteriaceae.Abbreviations Hepes N-2-hydroxyethylpiperazine-N-2-ethane-sulfonic acid - glucose 1-P glucose 1-phosphate - Bicine N,N-bis(2 hydroxyethyl)glycine - fructose 6-P fructose 6-phosphate - Mes 2(N-morpholino)-ethane sulfonic acid - fructose 1,6-P2 fructose 1,6 bis-phosphate - DTE dithioerythritol; pyridoxal-P, pyridoxal-phosphate - fructose 1-P fructose 1-phosphate - P-enolpyruvate phospho-enolpyruvate - 1,6 hexanediol bis-P 1,6 hexanediol bis-phosphate; glucose 6-P, glucose 6-phosphate - dihydroxyacetone-P dihydroxyacetone phosphate - 1-glycerol-3-P 1-glycerol-3-phosphate - erythrose 4-P erythrose 4-phosphate - 2-P-glycerate 2-phosphoglycerate - sedoheptulose 1,7-P2 sedoheptulose 1,7 bis-phosphate - 3-P-glycerate 3-phosphoglycerate - mannose-6-P mannose-6-phosphate  相似文献   

13.
Phosphofructokinase from the flight muscle of bumblebee was purified to homogeneity and its molecular and catalytic properties are presented. The kinetic behavior studies at pH 8.0 are consistent with random or compulsory-order ternary complex. At pH 7.4 the enzyme displays regulatory behavior with respect to both substrates, cooperativity toward fructose 6-phosphate, and inhibition by high concentration of ATP. Determinations of glycolytic intermediates in the flight muscle of insects exposed to low and normal temperatures showed statistically significant increases in the concentrations of AMP, fructose 2,6-bisphosphate, and glucose 6-phosphate during flight at 25 degrees C or rest at 5 degrees C. Measuring the activity of phosphofructokinase and fructose 1,6-bisphosphatase at 25 and 7.5 degrees C, in the presence of physiological concentrations of substrates and key effectors found in the muscle of bumblebee kept under different environmental temperatures and activity levels, suggests that the temperature dependence of fructose 6-phosphate/fructose 1,6-bisphosphate cycling may be regulated by fluctuation of fructose 2,6-bisphosphate concentration and changes in the affinity of both enzymes for substrates and effectors. Moreover, in the presence of in vivo concentrations of substrates, phosphofructokinase is inactive in the absence of fructose 2,6-bisphosphate.  相似文献   

14.
The binding of fructose 6-phosphate, ATP or its nonhydrolyzable analogue adenylyl 5'-(beta,gamma-methylenediphosphonate), ADP, and phosphoenolpyruvate to Escherichia coli phosphofructokinase has been studied by changes in the protein fluorescence and/or equilibrium dialysis. The results lead to the following conclusions: (1) tetrameric phosphofructokinase can bind four ATP but only two fructose-6-phosphate, and this binding occurs without cooperativity; (2) only two conformational states, T and R, with respectively a high and a low fluorescence, seem accessible to phosphofructokinase, which exists as a mixture of one-third R and two-third T states in the absence of ligand; (3) the substrate fructose 6-phosphate and the allosteric activator ADP bind preferentially to the low-fluorescence R state, while the other substrate, ATP [or its nonhydrolyzable analogue adenylyl 5'-(beta,gamma-methylenediphosphonate)], and the allosteric inhibitor phosphoenolpyruvate bind to the high-fluorescence T state; (4) the binding of a given ligand is cooperative, with a Hill coefficient of 2, only when this binding is accompanied by a complete shift from one state to the other; for instance, the binding of the ATP analogue adenylyl 5'-(beta,gamma-methylenediphosphonate) to the T state is cooperative only in the presence of fructose 6-phosphate which favors the R state. This behavior is qualitatively consistent with a concerted transition, but quite different from that described earlier for phosphofructokinase from steady-state activity measurements (Blangy et al., 1968). This discrepancy suggests that the allosteric properties of phosphofructokinase are due in part to ligand binding and in part to the kinetics of the enzymatic reaction.  相似文献   

15.
Summary The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose 6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate.The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 µM and in the presence of 0.5 mM ATP it increased to 27 µM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 µM. AMP, 10 µM, decreased the KD to 5 µM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 µM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 µM, and it increased to 15 µM in the presence of fructose 2,6-bisphosphate. The addition of 50 µM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 µM. AMP increased the KD to 5.9 µM whereas 0.3 mM citrate decreased the KD for ATP to about 2 µM. The KD for AMP, was 2.0 µM; the KD for cyclic AMP was 1.0 µM; the KD for ADP was 0.9 µM; the KD for fructose 1,6-bisphosphate was 0.5 µM; the KD for citrate was 0.4 µM and the KD for fructose 2,6-bisphosphate was about 0.1 µM. A maximum of about 4 moles of AMP, ADP and cyclic AMP and fructose 2,6-bisphosphate were bound per mole of enzyme. Taken collectively, these and previous studies (9) indicate that fructose 2,6-phosphate is a very effective activator of swine kidney phosphofructokinase. This effector binds to the enzyme with a very high affinity, and significantly decreases the binding of ATP at the inhibitory site on the enzyme.  相似文献   

16.
Pyruvate kinase was purified to homogeneity from a moderate thermophile, Bacillus stearothermophilus. The molecular weight of the enzyme was found to be 250,000 on gel filtration and 242,000 on sedimentation analysis. The enzyme consisted of four identical subunits of a molecular weight of 62,000-64,000. There were no remarkable differences between the thermophilic enzyme and mesophilic enzymes in amino acid composition, secondary structure, mono- and di-valent cation requirements for activity or specificity for nucleoside diphosphates. But the thermophilic enzyme was stable at high temperature and for a longer period of storage at lower temperature. Its specific activity was relatively high even at a low temperature (30 degrees C). The enzyme exhibited homotropic positive cooperativity for phosphoenol-pyruvate, but not for ADP. It was allosterically activated by AMP, ribose 5-phosphate and nucleoside monophosphates, but not by fructose 1,6-bisphosphate. Activation by AMP and ribose 5-phosphate, and inhibition by inorganic phosphate were also observed even at the physiological temperature (60 degrees C) for the thermophile.  相似文献   

17.
1. Ox heart phosphofructokinase catalyses isotope-exchange reactions at pH6.7 between ADP and ATP, and between fructose 6-phosphate and fructose 1,6-diphosphate, the latter reaction being absolutely dependent on the presence of the magnesium complex of ADP. 2. The reaction kinetics are hyperbolic with respect to substrate concentration for both exchange reactions (within the experimental error). 3. The influence of pH, AMP and citrate suggests that the fructose 6-phosphate-fructose 1,6-diphosphate exchange is subject to effector control, and is abolished by dissociation of the enzyme. 4. These results are discussed in relation to the reaction mechanism of the enzyme.  相似文献   

18.
Full-length cDNA clones for the alpha- and beta-subunits of pyrophosphate-fructose 6-phosphate 1-phosphotransferase have been isolated from a cDNA expression library derived from potato tuber poly(A)+ RNA. The nucleotide sequences indicate that the alpha- and beta-subunits are related with about 40% of amino acid residues being identical. A comparison of the deduced amino acid sequences of both subunits of this enzyme with that of the major ATP-dependent fructose 6-phosphate 1-phosphotransferase from Escherichia coli (Shirakihara, Y., and Evans, P. R. (1988) J. Mol. Biol. 204, 973-994) showed little homology between the proteins except for regions involved in the binding of fructose 6-phosphate/fructose, 1,6-bisphosphate and possibly between regions binding pyrophosphate and the beta- and gamma-phosphates of ADP/ATP. A comparison of the derived secondary structures of the two subunits of the PPi-dependent enzyme with the known secondary structure of the E. coli ATP-dependent enzyme indicated that the overall structure of these enzymes is similar. These data suggest that catalytic activity resides on the beta-subunit of the pyrophosphate-dependent enzyme.  相似文献   

19.
Wang X  Kemp RG 《Biochemistry》2001,40(13):3938-3942
Escherichia coli phosphofructokinase (PFK) has been proposed to have a random, nonrapid equilibrium mechanism that produces nonallosteric ATP inhibition as a result of substrate antagonism. The consequences of such a mechanism have been investigated by employing alternative substrates and mutants of the enzyme that produce a variety of nonallosteric kinetic patterns demonstrating substrate inhibition and sigmoid velocity curves. Mutations of a methionine residue in the sugar phosphate binding site produced apparent cooperativity in the interaction of fructose 6-phosphate. Cooperativity could also be seen with native enzyme using a poorly binding substrate, fructose 1-phosphate. With an alternative nucleotide, 1-carboxymethyl-ATP, coupled with a mutation that introduced a negative charge in the nucleotide binding site, one could observe substrate inhibition by fructose 6-phosphate and apparent cooperativity in the interaction with nucleotide. Furthermore, the use of a phosphoryl donor, gamma-thiol-ATP, which greatly reduced the catalytic rate, apparently facilitated the equilibration of all binding reactions and eliminated ATP inhibition. These unusual kinetic patterns could be interpreted within the random, steady-state model as reflecting changes in the rates of particular binding and catalytic events.  相似文献   

20.
Rabbit muscle phosphofructokinase, spin-labelled at its most reactive thiol group, has an electron spin resonance spectrum which is very sensitive to the binding of substrates and allosteric effectors. The spectral changes have been interpreted in terms of a concerted allosteric transition between two conformational states with non-exclusive binding of effectors. On this basis MgATP, fructose 6-phosphate plus ATP, and NH+4ions behave as potent positive effectors, inorganic phosphate, sulphate, AMP, fructose 6-phosphate and fructose 1,6-bisphosphate are less potent activators, and free ATP and H+ions are negative effectors, in agreement with the kinetic behaviour, but citrate behaves anomalously. In addition, the allosteric equilibrium can be displaced towards the inhibited state by selectively modifying two further thiol groups. Strong positive cooperativity occurs under suitable conditions with ATP, metal-ATP and fructose 6-phosphate. Biphasic changes of conformation, attributed to binding at the catalytic and inhibitory sites, have been observed in titrations with ATP. The differentiation of the two ATP binding sites arises in the presence of fructose 6-phosphate because of a distinct concerted effect on conformation between the two substrates at the active site. A similar effect occurs between ATP and citrate. Other heterotropic effects are more consistent with simple models; phosphates favour the binding, and reduce the cooperativity, of fructose 6-phosphate and metal-ATP, whereas excess ATP and H+ ions antagonise the binding and increase the cooperativity of fructose 6-phosphate. The observations are related to existing kinetic and binding studies where possible. Anomalous features of the behaviour suggest that the model should be regarded only as a first approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号