首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
P-selectin glycoprotein ligand-1 (PSGL-1) interactions with selectins regulate leukocyte migration in inflammatory lesions. In mice, selectin ligand activity regulating leukocyte recruitment and lymphocyte homing into lymph nodes results from the sum of unequal contributions of fucosyltransferase (FucT)-IV and FucT-VII, with FucT-VII playing a predominant role. Here we have examined the role of human FucT-IV and -VII in conferring L-selectin, P-selectin, and E-selectin binding activities to PSGL-1. Lewis x (Le(x)) carbohydrate was generated at the CHO(dhfr)(-) cell surface by FucT-IV expression, whereas sialyl Le(x) (sLe(x)) was synthesized by FucT-VII. Both human FucT-IV and -VII had the ability to generate carbohydrate ligands that support L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1, with FucT-VII playing a major role. Cooperation was observed between FucT-IV and -VII in recruiting L-, P-, or E-selectin-expressing cells on PSGL-1 and in regulating cell rolling velocity and stability. Additional rolling adhesion assays were performed to assess the role of Thr-57-linked core-2 O-glycans in supporting L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1. These studies confirmed that core-2 O-glycans attached to Thr-57 play a critical role in supporting L- and P-selectin-dependent rolling and revealed that additional binding sites support >75% of E-selectin-mediated rolling. The observations presented here indicate that human FucT-IV and -VII both contribute and cooperate in regulating L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1, with FucT-VII playing a predominant role in conferring selectin binding activity to PSGL-1.  相似文献   

2.
Selectins play a critical role in initiating leukocyte binding to vascular endothelium. In addition, in vitro experiments have shown that neutrophils use L-selectin to roll on adherent neutrophils, suggesting that they express a nonvascular L-selectin ligand. Using a L- selectin/IgM heavy chain (mu) chimeric protein as an immunocytological probe, we show here that L-selectin can bind to neutrophils, monocytes, CD34+ hematopoietic progenitors, and HL-60 and KG-1 myeloid cells. The interaction between L-selectin and leukocytes was protease sensitive and calcium dependent, and abolished by cell treatment with neuraminidase, chlorate, or O-sialoglycoprotein endopeptidase. These results revealed common features between leukocyte L-selectin ligand and the mucin-like P-selectin glycoprotein ligand 1 (PSGL-1), which mediates neutrophil rolling on P- and E-selectin. The possibility that PSGL-1 could be a ligand for L-selectin was further supported by the ability of P-selectin/mu chimera to inhibit L-selectin/mu binding to leukocytes and by the complete inhibition of both selectin interactions with myeloid cells treated with mocarhagin, a cobra venom metalloproteinase that cleaves the amino terminus of PSGL-1 at Tyr-51. Finally, the abrogation of L- and P-selectin binding to myeloid cells treated with a polyclonal antibody, raised against a peptide corresponding to the amino acid residues 42-56 of PSGL-1, indicated that L- and P-selectin interact with a domain located at the amino- terminal end of PSGL-1. The ability of the anti-PSGL-1 mAb PL-1 to inhibit L- and P-selectin binding to KG-1 cells further supported that possibility. Thus, apart from being involved in neutrophil rolling on P- and E-selectin, PSGL-1 also plays a critical role in mediating neutrophil attachment to adherent neutrophils. Interaction between L- selectin and PSGL-1 may be of major importance for increasing leukocyte recruitment at inflammatory sites.  相似文献   

3.
Leukocytes express L-selectin ligands critical for leukocyte-leukocyte interactions at sites of inflammation. The predominant leukocyte L-selectin ligand is P-selectin glycoprotein ligand-1 (PSGL-1), which displays appropriate sialyl Lewis x (sLex)-like carbohydrate determinants for L-selectin recognition. Among the sLex-like determinants expressed by human leukocytes is a unique carbohydrate epitope defined by the HECA-452 mAb. The HECA-452 Ag is a critical component of L-selectin ligands expressed by vascular endothelial cells. However, HECA-452 Ag expression on human leukocyte L-selectin ligands has not been assessed. In this study, the HECA-452 mAb blocked 88-99% of neutrophil rolling on, or attachment to, adherent cells expressing L-selectin in multiple experimental systems. A function-blocking anti-PSGL-1 mAb also inhibited L-selectin binding to neutrophils by 89-98%. In addition, the HECA-452 and anti-PSGL-1 mAbs blocked the majority of P-selectin binding to neutrophils. Western blot analysis revealed that PSGL-1 immunoprecipitated from neutrophils displayed HECA-452 mAb-reactive determinants and that PSGL-1 was the predominant scaffold for HECA-452 Ag display. Leukocyte L-selectin ligands also contained sulfated determinants since culturing ligand-bearing cells with NaClO3 abrogated L-selectin binding. Consistent with this, human neutrophils expressed mRNA encoding five different sulfotransferases associated with the generation of selectin ligands: CHST1, CHST2, CHST3, TPST1, and HEC-GlcNAc6ST. Therefore, the HECA-452-defined carbohydrate determinant displayed on PSGL-1 represented the predominant L-selectin and P-selectin ligand expressed by neutrophils.  相似文献   

4.
The selectins (lectin-EGF-complement binding-cell adhesion molecules [LEC-CAMs]) are a family of mammalian receptors implicated in the initial interactions between leukocytes and vascular endothelia, leading to lymphocyte homing, platelet binding, and neutrophil extravasation. The three known selectins, L-selectin (leukocyte adhesion molecule-1 [LECAM-1]), E-selectin (endothelial-leukocyte adhesion molecule-1 [ELAM-1]), and P-selectin (GMP-140) share structural features that include a calcium-dependent lectin domain. The sialyl Lewis(x) carbohydrate epitope has been reported as a ligand for both E- and P-selectins. Although L-selectin has been demonstrated to bind to carbohydrates, structural features of potential mammalian carbohydrate ligand(s) have not been well defined. Using an ELISA developed with a sialyl Lewis(x)-containing glycolipid and an E-selectin-IgG chimera, we have demonstrated the direct binding of the L-selectin-IgG chimera to sialyl Lewis(x). This recognition was calcium dependent, and could be blocked by Mel-14 antibody but not by other antibodies. Recognition was confirmed by the ability of cells expressing the native L-selectin to adhere to immobilized sialyl Lewis(x). These data suggest that the sialyl Lewis(x) oligosaccharide may form the basis of a recognition domain common to all three selectins.  相似文献   

5.
Protein-carbohydrate interactions have been found to be important in many steps in lymphocyte recirculation and inflammatory responses. A family of carbohydrate-binding proteins or lectins, termed selectins, has been discovered and shown to be involved directly in these processes. The three known selectins, termed L-, E- and P-selectins, have domains homologous to other Ca(2+)-dependent (C-type) lectins. L-selectin is expressed constitutively on lymphocytes, E-selectin is expressed by activated endothelial cells, and P-selectin is expressed by activated platelets and endothelial cells. Here, we review the nature of the carbohydrate determinants in tissues recognized by these selectins. The expression of specific sialylated, fucosylated and sulfated carbohydrates in activated endothelium and high endothelial venules promotes interactions with L-selectin on leukocyte surfaces. In contrast, E- and P-selectins recognize specific carbohydrate determinants related to sialyl Le(x) antigen on neutrophil and monocyte surfaces. The discovery of the selectins has generated excitement among glycoconjugate researchers that other carbohydrate-binding proteins and their cognate ligands will be found to function in regulating many types of cellular interactions.  相似文献   

6.
7.
Two adhesive events critical to efficient recruitment of neutrophils at vascular sites of inflammation are up-regulation of endothelial selectins that bind sialyl Lewis(x) ligands and activation of beta(2)-integrins that support neutrophil arrest by binding ICAM-1. We have previously reported that neutrophils rolling on E-selectin are sufficient for signaling cell arrest through beta(2)-integrin binding of ICAM-1 in a process dependent upon ligation of L-selectin and P-selectin glycoprotein ligand 1 (PSGL-1). Unresolved are the spatial and temporal events that occur as E-selectin binds to human neutrophils and dynamically signals the transition from neutrophil rolling to arrest. Here we show that binding of E-selectin to sialyl Lewis(x) on L-selectin and PSGL-1 drives their colocalization into membrane caps at the trailing edge of neutrophils rolling on HUVECs and on an L-cell monolayer coexpressing E-selectin and ICAM-1. Likewise, binding of recombinant E-selectin to PMNs in suspension also elicited coclustering of L-selectin and PSGL-1 that was signaled via mitogen-activated protein kinase. Binding of recombinant E-selectin signaled activation of beta(2)-integrin to high-avidity clusters and elicited efficient neutrophil capture of beta(2)-integrin ligands in shear flow. Inhibition of p38 and p42/44 mitogen-activated protein kinase blocked the cocapping of L-selectin and PSGL-1 and the subsequent clustering of high-affinity beta(2)-integrin. Taken together, the data suggest that E-selectin is unique among selectins in its capacity for clustering sialylated ligands and transducing signals leading to neutrophil arrest in shear flow.  相似文献   

8.
P-selectin glycoprotein ligand-1 (PSGL-1) interacts with selectins to support leukocyte rolling along vascular wall. L- and P-selectin bind to N-terminal tyrosine sulfate residues and to core-2 O-glycans attached to Thr-57, whereas tyrosine sulfation is not required for E-selectin binding. PSGL-1 extracellular domain contains decameric repeats, which extend L- and P-selectin binding sites far above the plasma membrane. We hypothesized that decamers may play a role in regulating PSGL-1 interactions with selectins. Chinese hamster ovary cells expressing wild-type PSGL-1 or PSGL-1 molecules exhibiting deletion or substitution of decamers with the tandem repeats of platelet glycoprotein Ibalpha were compared in their ability to roll on selectins and to bind soluble L- or P-selectin. Deletion of decamers abrogated soluble L-selectin binding and cell rolling on L-selectin, whereas their substitution partially reversed these diminutions. P-selectin-dependent interactions with PSGL-1 were less affected by decamer deletion. Videomicroscopy analysis showed that decamers are required to stabilize L-selectin-dependent rolling. Importantly, adhesion assays performed on recombinant decamers demonstrated that they directly bind to E-selectin and promote slow rolling. Our results indicate that the role of decamers is to extend PSGL-1 N terminus far above the cell surface to support and stabilize leukocyte rolling on L- or P-selectin. In addition, they function as a cell adhesion receptor, which supports approximately 80% of E-selectin-dependent rolling.  相似文献   

9.
Sialyl Le(x), NeuNAcalpha2 --> 3Galbeta1 --> 4(Fucalpha1 --> 3)GlcNAcbeta --> R, is known to be a ligand for E-selectin in various assays. The sulfated counterpart of sialyl Le(x), sulfo Le(x), (Sulfo --> 3) Galbeta1 --> 4 (Fucalpha1 --> 3) GlcNAcbeta --> R, was also shown to be a ligand for E-selectin in solid-phase assays employing immobilized oligosaccharides. In order to determine whether sulfo Le(x) structure on the cell surface also works as E-selectin or P-selectin ligand, a novel approach for in vitro transfer of oligosaccharides (S. Tsuboi, Y. Isogai, N. Hada, J. K. King, O. Hindsgaul, and M. Fukuda (1996) J. Biol. Chem. 271, 27213-27216) was utilized. A synthetic GDP-fucose harboring sialyl Le(x) or sulfo Le(x) oligosaccharide was enzymatically transferred to Chinese hamster ovary (CHO) cells with a milk fucosyltransferase. The resultant cells, CHO-sialyl Le(x) and CHO-sulfo Le(x) were tested for adhesion to E-selectin. IgG or P-selectin. IgG chimeric protein coated on plates. The results indicate that CHO-sialyl Le(x) adhered efficiently to E-selectin, while adhesion of CHO-sulfo Le(x) was very poor despite the fact that near equal number of the ligands had been attached to the cell surface. In contrast, CHO-sulfo Le(x) adhered efficiently to P-selectin, while CHO-sialyl Le(x) adhered modestly to P-selectin. These results demonstrate that sialyl Le(x) and sulfo Le(x) structures on the cell surface differ substantially in their ability to adhere to E- and P-selectin.  相似文献   

10.
Monomeric sialyl Lewis(X) (sLe(x)) and sLe(x)-like oligosaccharides are minimal structures capable of supporting selectin binding in vitro. However, their weak binding interactions do not correlate with the high-affinity binding interactions witnessed in vivo. The polyvalent display of carbohydrate groups found on cell surface glycoprotein structures may contribute to the enhanced binding strength of selectin-mediated adhesion. Detailed biochemical analyses of physiological selectin ligands have revealed a complicated composition of molecules that bind to the selectins in vivo and suggest that there are other requirements for tight binding beyond simple carbohydrate multimerization. In an effort to mimic the high-affinity binding, polyvalent scaffolds that contain multicomponent displays of selectin-binding ligands have been synthesized. Here, we demonstrate that the presentation of additional anionic functional groups in the form of sulfate esters, on a polymerized liposome surface containing a multimeric array of sLe(x)-like oligosaccharides, generates a highly potent, bifunctional macromolecular assembly. This assembly inhibits L-, E-, and P-selectin binding to GlyCAM-1, a physiological ligand better than sLe(x)-like liposomes without additional anionic charge. These multivalent arrays are 4 orders of magnitude better than the monovalent carbohydrate. Liposomes displaying 3'-sulfo Lewis(X)-like oligosaccharides, on the other hand, show slight loss of binding with introduction of additional anionic functional groups for E- and P-selectin and negligible change for L-selectin. The ability to rapidly and systematically vary the composition of these assemblies is a distinguishing feature of this methodology and may be applied to the study of other systems where composite binding determinants are important for high-affinity binding.  相似文献   

11.
The limited efficacy of monocyte-derived dendritic cell (mo-DC)-based vaccines is primarily attributed to the reduced mo-DC migratory capacity. One undefined aspect is the initial binding of mo-DCs to endothelial cells and vascular selectins. In this study, we investigated the role and modulation of the selectin binding determinant sialyl Lewis(x) (sLe(x)) in selectin-dependent mo-DC binding. Our data reveal that sLe(x) is required for maximal binding of mo-DCs to tumor necrosis factor (TNF)-α-activated endothelial cells under static conditions, as evidenced by the use of sialidase. Sialidase treatment also abrogated mo-DC cell tethering to immobilized, purified P-, L-, or E-selectin under flow. The requirement of sLe(x)-dependent binding of mo-DC to selectins was further substantiated by using sLe(x) free sugar and anti-sLe(x) antibody, which significantly suppressed mo-DC-selectin binding. P-selectin glycoprotein ligand-1 is required for mo-DC binding to both P- and L-selectin, but it is dispensable for E-selectin recognition. Interestingly, the extent of mo-DC tethering was maximal on P-selectin, followed by E- and L- selectin. Accordingly, L-selectin mediated faster mo-DC rolling than E- or P-selectin. Interferon (IFN)-γ induces a significant increase in mo-DC surface sLe(x) expression, which is probably due to the enhanced synthesis of C2GnT-I. These findings may contribute to improving mo-DC-based vaccination protocols.  相似文献   

12.
Sperandio M 《The FEBS journal》2006,273(19):4377-4389
Leukocyte rolling is an important step for the successful recruitment of leukocytes into tissue and occurs predominantly in inflamed microvessels and in high endothelial venules of secondary lymphoid organs. Leukocyte rolling is mediated by a group of C-type lectins, termed selectins. Three different selectins have been identified - P-, E- and L-selectin - which recognize and bind to crucial carbohydrate determinants on selectin ligands. Among selectin ligands, P-selectin glycoprotein ligand-1 is the main inflammatory selectin ligand, showing binding to all three selectins under in vivo conditions. Functional relevant selectin ligands expressed on high endothelial venules of lymphoid tissue are less clearly defined at the protein level. However, high endothelial venule-expressed selectin ligands were instrumental in uncovering the crucial role of post-translational modifications for selectin ligand activity. Several glycosyltransferases, such as core 2 beta1,6-N-acetylglucosaminyltransferase-I, beta1,4-galactosyltransferases, alpha1,3-fucosyltransferases and alpha2,3-sialyltransferases have been described to participate in the synthesis of core 2 decorated O-glycan structures carrying the tetrasaccharide sialyl Lewis X, a carbohydrate determinant on selectin ligands with binding activity to all three selectins. In addition, modifications, such as carbohydrate or tyrosine sulfation, were also found to contribute to the synthesis of functional selectin ligands.  相似文献   

13.
Leukocyte adhesion to vascular endothelium under flow involves an adhesion cascade consisting of multiple receptor pairs that may function in an overlapping fashion. P-selectin glycoprotein ligand-1 (PSGL-1) and L-selectin have been implicated in neutrophil adhesion to P- and E-selectin under flow conditions. To study, in isolation, the interaction of PSGL-1 with P-and E-selectin under flow, we developed an in vitro model in which various recombinant regions of extracellular PSGL-1 were coupled to 10-μm-diameter microspheres. In a parallel plate chamber with well defined flow conditions, live time video microscopy analyses revealed that microspheres coated with PSGL-1 attached and rolled on 4-h tumor necrosis factor-α–activated endothelial cell monolayers, which express high levels of E-selectin, and CHO monolayers stably expressing E-or P-selectin. Further studies using CHO-E and -P monolayers demonstrate that the first 19 amino acids of PSGL-1 are sufficient for attachment and rolling on both E- and P-selectin and suggest that a sialyl Lewis x–containing glycan at Threonine-16 is critical for this sequence of amino acids to mediate attachment to E- and P-selectin. The data also demonstrate that a sulfated, anionic polypeptide segment within the amino terminus of PSGL-1 is necessary for PSGL-1–mediated attachment to P- but not to E-selectin. In addition, the results suggest that PSGL-1 has more than one binding site for E-selectin: one site located within the first 19 amino acids of PSGL-1 and one or more sites located between amino acids 19 through 148.  相似文献   

14.
Somers WS  Tang J  Shaw GD  Camphausen RT 《Cell》2000,103(3):467-479
P-, E- and L-selectin constitute a family of cell adhesion receptors that mediate the initial tethering and rolling of leukocytes on inflamed endothelium as a prelude to their firm attachment and extravasation into tissues. The selectins bind weakly to sialyl Lewisx (SLe(X))-like glycans, but with high-affinity to specific glycoprotein counterreceptors, including PSGL-1. Here, we report crystal structures of human P- and E-selectin constructs containing the lectin and EGF (LE) domains co-complexed with SLe(X). We also present the crystal structure of P-selectin LE co-complexed with the N-terminal domain of human PSGL-1 modified by both tyrosine sulfation and SLe(X). These structures reveal differences in how E- and P-selectin bind SLe(X) and the molecular basis of the high-affinity interaction between P-selectin and PSGL-1.  相似文献   

15.
P-selectin on platelets and endothelial cells and E-selectin on endothelial cells are leukocyte receptors that recognize lineage-specific carbohydrates on neutrophils and monocytes. The proposed ligands for these receptors contain the Le(x) core and sialic acid. Since other investigators have shown that both E-selectin and P-selectin bind to sialylated Le(x), we evaluated whether E-selectin and P-selectin recognize the same counter-receptor on leukocytes. The interaction of HL60 cells with Chinese hamster ovary (CHO) cells expressing P-selectin or E-selectin was studied. To determine whether a protein component is required in addition to sialyl Le(x) for either P-selectin or E-selectin recognition, HL60 cells or neutrophils were digested with proteases, including chymotrypsin, elastase, proteinase Glu-C, ficin, papain, or thermolysin. Cells treated with these proteases bound E-selectin but not P-selectin. Fucosidase or neuraminidase treatment of HL60 cells markedly decreased binding to both E-selectin- and P-selectin-expressing CHO cells. Growth of HL60 cells in tunicamycin inhibited the ability of these cells to support P-selectin-mediated binding and, to a lesser extent, E-selectin-mediated binding. Purified P-selectin inhibited CHO:P-selectin binding to HL60 cells, but incompletely inhibited CHO:E-selectin binding to HL60 cells. However, purified soluble E-selectin inhibited CHO:P-selectin and CHO:E-selectin binding to HL60 cells equivalently and completely. COS cells, unable to bind to E-selectin or P-selectin, bound E-selectin but not P-selectin upon transfection with alpha-1,3-fucosyltransferase or alpha-1,3/1,4-fucosyltransferase. Similarly, LEC 11 cells expressing sialyl Le(x) bound E-selectin- but not P-selectin-expressing CHO cells. Sambucus nigra lectin, specific for the sialyl-2,6 beta Gal/GalNAc linkage, inhibited P-selectin but not E-selectin binding to HL60 cells. Although sialic acid and Le(x) are components of the P-selectin ligand and the E-selectin ligand, these results indicate that the ligands are related, having overlapping specificities, but are structurally distinct. A protein component containing sialyl Le(x) in proximity to sialyl-2,6 beta Gal structures on the P-selectin ligand may contribute to its specificity for P-selectin.  相似文献   

16.
P-selectin glycoprotein ligand-1 (PSGL-1), a dimeric mucin on leukocytes, is the best characterized ligand for selectins. P-selectin binds stereospecifically to the extreme N terminus of PSGL-1, which contains three clustered tyrosine sulfates (TyrSO3-) adjacent to a Thr residue with a core 2-based O-glycan expressing sialyl Lewis x (C2-O-sLe(x)). GSP-6, a synthetic glycosulfopeptide modeled after the N terminus of PSGL-1, containing three TyrSO3- residues and a short, monofucosylated C2-O-sLe(x) bound to P-selectin with high affinity (K(d) approximately 650 nm). However, PSGL-1 from human HL-60 cells contains higher levels of O-glycans that are sialylated and polyfucosylated polylactosamines (PFPL). Furthermore, studies with fucosyltransferase-deficient mice suggest that sialylated PFPL structures contribute to binding to P-selectin. To resolve whether sialylated PFPL O-glycans participate in binding of PSGL-1 to human P-selectin, we synthesized glycosulfopeptides, designated GSP-6' and GSP-6", with three TyrSO3- residues and either difucosylated polylactosamine (C2-O-Le(x)-sLe(x)) or trifucosylated polylactosamine (C2-O-Le(x)-Le(x)-sLe(x)). Binding of the GSPs to P-selectin was measured by affinity chromatography, fluorescence solid-phase assays, and equilibrium gel filtration. Unexpectedly, both GSP-6' and GSP-6" bound to P-selectin with low affinity (K(d) approximately 37 microm for GSP-6' and K(d) approximately 50 microm for GSP-6"). Binding of GSP-6' and GSP-6" to P-selectin required fucosylation and, to a lesser extent, sialylation as well as the sulfated peptide backbone of GSP-6' and GSP-6". These results demonstrate that contrary to expectations, a core 2 O-glycan containing sialylated PFPL does not promote high affinity binding of PSGL-1 to P-selectin.  相似文献   

17.
L-selectin expressed on leukocytes is involved in lymphocyte homing to secondary lymphoid organs and leukocyte recruitment into inflamed tissue. L-selectin binds to the sulfated sialyl Lewis x (6-sulfo-sLex) epitope present on O-glycans of various glycoproteins in high endothelial venules. In addition, L-selectin interacts with the dimeric mucin P-selectin glycoprotein ligand-1 (PSGL-1) expressed on leukocytes. PSGL-1 lacks 6-sulfo-sLex but contains sulfated tyrosine residues (Tyr-SO3)at positions 46, 48, and 51 and sLex in a core 2-based O-glycan (C2-O-sLex) on Thr at position 57. The role of tyrosine sulfation and core 2 O-glycans in binding of PSGL-1 to L-selectin is not well defined. Here, we show that L-selectin binds to a glycosulfopeptide (GSP-6) modeled after the extreme N terminus of human PSGL-1, containing three Tyr-SO3 and a nearby Thr modified with C2-O-sLex. Leukocytes roll on immobilized GSP-6 in an L-selectin-dependent manner, and rolling is dependent on Tyr-SO3 and C2-O-sLex on GSP-6. The dissociation constant for binding of L-selectin to GSP-6, as measured by equilibrium gel filtration, is approximately 5 microm. Binding is dependent on Tyr-SO3 residues as well as the sialic acid and fucose residues of C2-O-sLex. Binding to an isomeric glycosulfopeptide containing three Tyr-SO3 residues and a core 1-based O-glycan expressing sLex was reduced by approximately 90%. All three Tyr-SO3 residues of GSP-6 are required for high affinity binding to L-selectin. Low affinity binding to mono- and disulfated GSPs is largely independent of the position of the Tyr-SO3 residues, except for some binding preference for an isomer sulfated on both Tyr-48 and -51. These results demonstrate that L-selectin binds with high affinity to the N-terminal region of PSGL-1 through cooperative interactions with three sulfated tyrosine residues and an appropriately positioned C2-O-sLex O-glycan.  相似文献   

18.
《The Journal of cell biology》1993,120(5):1227-1235
The selectins are a family of three calcium-dependent lectins that mediate adhesive interactions between leukocytes and the endothelium during normal and abnormal inflammatory episodes. Previous work has implicated the carbohydrate sialyl Lewis(x) (sLe(x); sialic acid alpha 2-3 galactose beta 1-4 [Fucose alpha 1-3] N-acetyl glucosamine) as a component of the ligand recognized by E- and P-selectin. In the case of P-selectin, other components of the cell surface, including 2'6-linked sialic acid and sulfatide (galactose-4-sulfate ceramide), have also been proposed for adhesion mediated by this selectin. We have recently defined a region of the E-selectin lectin domain that appears to be directly involved with carbohydrate recognition and cell adhesion (Erbe, D. V., B. A. Wolitzky, L. G. Presta, C. R. Norton, R. J. Ramos, D. K. Burns, R. M. Rumberger, B. N. N. Rao, C. Foxall, B. K. Brandley, and L. A. Lasky. 1992. J. Cell Biol. 119:215-227). Here we describe a similar analysis of the P-selectin lectin domain which demonstrates that a homologous region of this glycoprotein's lectin motif is involved with carbohydrate recognition and cell binding. In addition, we present evidence that is inconsistent with a biological role for either 2'6-linked sialic acid or sulfatide in P-selectin-mediated adhesion. These results suggest that a common region of the E- and P- selectin lectin domains appears to mediate carbohydrate recognition and cell adhesion.  相似文献   

19.
Leukocyte trafficking involves specific recognition between P-selectin and L-selectin and PSGL-1 containing core 2-based O-glycans expressing sialyl Lewis x (SLe(x)) antigen. However, the structural identity of the glycan component(s) displayed by murine neutrophil PSGL-1 that contributes to its P-selectin counter-receptor activity has been uncertain, since these cells express little if any SLe(x) antigen, and because there have been no direct studies to examine murine PSGL-1 glycosylation. To address this uncertainty, we studied PSGL-1 glycosylation in the murine cell line WEHI-3 using metabolic-radiolabeling with (3)H-monosaccharide precursors to detect low-abundance O-glycan structures. We report that PSGL-1 from WEHI-3 cells expresses a di-sialylated core 2 O-glycan containing the SLe(x) antigen. This fucosylated O-glycan is scarce on PSGL-1 and essentially undetectable in total leukocyte glycoproteins from WEHI-3 cells. These results demonstrate that WEHI-3 cells selectively fucosylate PSGL-1 to generate functionally important core 2-based O-glycans containing the SLe(x) antigen.  相似文献   

20.
In this study we describe ELISA-type P- and L-selectin binding assays for the analysis of selectin antagonists. A biotinylated polyacrylamide-type glycoconjugate containing sialyl Lewis A (sLe(a)-polymer) is utilized as a synthetic ligand for both selectins analogous to the E-selectin assay we have developed recently. Following precomplexation of sLe(a)-polymer with streptavidin-peroxidase, the complex is added to microtiter plates coated with the recombinant selectins. Binding of sLe(a)-polymer to the immobilized selectins is measured by the peroxidase reaction. SLe(a)-polymer was found to bind to P- and L-selectin in a cation-dependent manner. The interaction of the polymer was blocked by neutralizing anti-P- and anti-L-selectin antibody, respectively. The reference compounds heparin and fucoidan inhibited in both assays. Sialyl Lewis X (sLe(x)) blocked binding to L-selectin by 46% at 3 mM, whereas no inhibition was observed in the P-selectin assay up to 3 mM. Control polymers containing sialic acid or beta-d-glucose instead of sLe(a) weakly bound or failed to bind to the selectins. Both assays are rapid to perform and of low variability. The P-selectin assay was successfully employed to identify and optimize novel carbohydrate-based P-selectin antagonists. The P-, L-, and E-selectin assays were used to determine the fine selectivity of several sLe(x)-related selectin antagonists. These studies together suggest that sLe(a)-polymer-based selectin assays are well suited for primary screening and the characterization of selectin antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号