首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.  相似文献   

2.
Proper biomechanics help baseball pitchers minimize their risk of injury and maximize performance. However previous studies involved adult pitchers only. In this study, 23 youth, 33 high school, 115 college, and 60 professional baseball pitchers were analyzed. Sixteen kinematic (11 position and five velocity), eight kinetic, and six temporal parameters were calculated and compared among the four levels of competition. Only one of the 11 kinematic position parameters showed significant differences among the four levels, while all five velocity parameters showed significant differences. All eight kinetic parameters increased significantly with competition level. None of the six temporal parameters showed significant differences. Since 16 of the 17 position and temporal parameters showed no significant differences, this study supports the philosophy that a child should be taught ‘proper’ pitching mechanics for use throughout a career. Kinetic differences observed suggest greater injury risk at higher competition levels. Since adult pitchers did not demonstrate different position or temporal patterns than younger pitchers, increases in joint forces and torques were most likely due to increased strength and muscle mass in the higher level athlete. The greater shoulder and elbow angular velocities produced by high-level pitchers were most likely due to the greater torques they generated during the arm cocking and acceleration phases. The combination of more arm angular velocity and a longer arm resulted in greater linear ball velocity for the higher level pitcher. Thus, it appears that the natural progression for successful pitching is to learn proper mechanics as early as possible, and build strength as the body matures.  相似文献   

3.
Joint range of motion and physical capacities have been shown to change with age in both throwing athletes and non-athletes. The age of professional baseball pitchers could span from late teens to mid-40s. However, the effects of age on the pitching kinematics among professional baseball pitchers are still unknown. In this study, 67 healthy professional baseball pitchers were tested using a 3D motion analysis system. Their mean age was 23.7+/-3.3 years (range 18.8-34.4). The 12 pitchers more than one standard deviation older than the mean (i.e., older than 27.0 years) were categorized into the older group, and the 10 pitchers more than one standard deviation younger than the mean (i.e., younger than 20.4 years) were defined as the younger group. In all, 18 kinematic variables (14 position and 4 velocity) were calculated, and Student's t-tests were used to compare the variables between the two groups. Six position variables were found to be significantly different between the two groups. At the instant of lead foot contact, the older group had a shorter stride, a more closed pelvis orientation, and a more closed upper trunk orientation. The older group also produced less shoulder external rotation during the arm cocking phase, more lead knee flexion at ball release, and less forward trunk tilt at ball release. Ball velocity and body segment velocity variables showed no significant differences between the two groups. Thus, differences in specific pitching kinematic variables among professional baseball pitchers of different age groups were not associated with significant differences in ball velocities between groups. The current results suggest that both biological changes and technique adaptations occur during the career of a professional baseball pitcher.  相似文献   

4.
A three-dimensional, six-segment model was applied to the pitching motion of three professional pitchers to analyze the kinematics and kinetics of the hips, upper trunk, humerus and forearm plus hand of both the upper limbs. Subjects were filmed at 250 frames per second. An inverse dynamics approach and angular momentum principle with respect to the proximal endpoint of a rigid segment were employed in the analysis. Results showed considerable similarities between subjects in the kinetic control of trunk rotation about the spine's longitudinal axis, but variability in the control of trunk lean both to the side and forward. The kinetics of the throwing shoulder and elbow joint were comparable between subjects, but the contribution of the non-throwing upper limb was minimal and variable. The upper trunk rotators played a key role in accelerating the ball to an early, low velocity near stride foot contact. After a brief pause they resumed acting strongly in a positive direction, though not enough to prevent trunk angular velocity slowing, as the musculature of the arm applied a load at the throwing shoulder. The interaction moment from the proximal segments assisted the forearm extensor in slowing flexion and producing rapid elbow extension near ball release. The temporal onset of muscular torques was not in a strictly successive proximal-to-distal sequence.  相似文献   

5.
The timing of glove movements used by baseball pitchers to catch fast approaching balls (i.e., line drives) was examined in two tests to determine the responses and temporal characteristics of glove movements in high school and college baseball pitchers. Balls were projected toward the head of participants at 34.8 m.s-1 (78 mph) on average in an indoor test and at speeds approaching 58.1 m.s-1 (130 mph) in a field test. Pitchers caught over 80% and 15% of the projected balls in the indoor and field tests, respectively. Analyses of glove responses indicated that all pitchers could track the line drives and produce coordinated glove movements, which were initiated 160 ms (+/-47.8), on average, after the ball was launched. College pitchers made initial glove movements sooner than high school pitchers in the field test (p=0.012). In contrast, average glove velocity for pitchers increased from 1.33 (+/-0.61) to 3.45 (+/-0.86) m.s-1 across the tests, but did not differ between experience levels. Glove movement initiation and speed were unrelated, and pitchers utilized visual information throughout the ball's flight to catch balls that approached at speeds exceeding the estimated speeds in competitive situations.  相似文献   

6.
High rotational torques during baseball pitching are believed to be linked to most overuse injuries at the shoulder. This study investigated the effects of trunk rotation on shoulder rotational torques during pitching. A total of 38 pitchers from the professional, college, high school, and youth ranks were recruited for motion analysis. Professional pitchers demonstrated the least amount of rotational torque (p = .001) among skeletally mature players, while exhibiting the ability to rotate their trunks significantly later in the pitching cycle, as compared to other groups (p = .01). It was concluded that the timing of their rotation was optimized as to allow the throwing shoulder to move with decreased joint loading by conserving the momentum generated by the trunk. These results suggest that a specific pattern in throwing can be utilized to increase the efficiency of the pitch, which would allow a player to improve performance with decreased risk of overuse injury.  相似文献   

7.
This study investigated how baseball players generate large angular velocity at each joint by coordinating the joint torque and velocity-dependent torque during overarm throwing. Using a four-segment model (i.e., trunk, upper arm, forearm, and hand) that has 13 degrees of freedom, we conducted the induced acceleration analysis to determine the accelerations induced by these torques by multiplying the inverse of the system inertia matrix to the torque vectors. We found that the proximal joint motions (i.e., trunk forward motion, trunk leftward rotation, and shoulder internal rotation) were mainly accelerated by the joint torques at their own joints, whereas the distal joint motions (i.e., elbow extension and wrist flexion) were mainly accelerated by the velocity-dependent torques. We further examined which segment motion is the source of the velocity-dependent torque acting on the elbow and wrist accelerations. The results showed that the angular velocities of the trunk and upper arm produced the velocity-dependent torque for initial elbow extension acceleration. As a result, the elbow joint angular velocity increased, and concurrently, the forearm angular velocity relative to the ground also increased. The forearm angular velocity subsequently accelerated the elbow extension and wrist flexion. It also accelerated the shoulder internal rotation during the short period around the ball-release time. These results indicate that baseball players accelerate the distal elbow and wrist joint rotations by utilizing the velocity-dependent torque that is originally produced by the proximal trunk and shoulder joint torques in the early phase.  相似文献   

8.
The objective of the study was to examine the relationship between balance and pitching error in college baseball pitchers. Sixteen college baseball pitchers, 9 National Association of Intercollegiate Athletics (NAIA) and 7 National Collegiate Athletic Association (NCAA) Division III, participated in the study. Balance ability, expressed as average sway velocity (deg.s(-1)), during dominant leg unilateral stance with eyes open and eyes closed was quantified for each subject utilizing the Balance Master System 7.04 (long force plate). Additionally, each subject underwent sensory organization testing on the SMART EquiTest System providing information regarding the effective use of the somatosensory, visual, and vestibular inputs. Pitching error was assessed with a high-speed video camera recorder during spring practice. A JUGS radar gun measured pitch velocity. The mean pitching error was 37.50 cm with a mean pitch velocity of 78 miles.h(-1) (35 m.s(-1)). No significant correlation was demonstrated between unilateral stance eyes open and pitching error (r = -0.24; p = 0.36) or unilateral stance eyes closed and pitching error (r = -0.29; p = 0.27). A significant negative correlation was demonstrated between sensory organization test 5 and pitching error (r = -0.50; p = 0.05) and between sensory organization test 5/1 and pitching error (r = -0.50; p = 0.05). Additionally, unilateral stance eyes closed demonstrated a positive correlation with pitch velocity (r = 0.52; p = 0.04). The results reveal that low levels of vestibular input utilization may lead to high levels of pitching error in college baseball pitchers.  相似文献   

9.
An overarm throw in the sagittal plane was simulated using a three-segment model representing the upper arm, forearm and hand plus ball. Torque inputs at each joint were turned on at systematically varied times and maintained constant once initiated. All simulations began from identical initial conditions. The aim was to determine the sequence of onset of joint torques which gave the maximal range which the ball would travel and the maximal velocity of the ball irrespective of direction. Best throws proved to be sequential in that joint torques were turned on in a proximal to distal (P-D) temporal sequence. The P-D sequence was also demonstrated by time of peak joint angular velocities. The P-D sequence also proved to be best when segmental constants and joint torques were changed. As this sequence is a common feature of skilled throwing and striking, it is concluded that the linked segmental nature of the limb, irrespective of normal muscle characteristics, primarily predisposes the system to the use of a P-D sequence. The algebraic sign of the shoulder and elbow torques was reversed instantaneously to represent the use of antagonistic muscles. This led to increased output if performed late in the throw and in a P-D sequence. It is concluded that the use of antagonism leads to beneficial redistributions of angular velocity amongst limb segments.  相似文献   

10.
The purpose of this study was to investigate ground reaction forces (GRF) in collegiate baseball pitchers and their relationship to pitching mechanics. Fourteen healthy collegiate baseball pitchers participated in this study. High-speed video and force plate data were collected for fastballs from each pitcher. The average ball speed was 35 ± 3 m/sec (78 ± 7 mph). Peak GRFs of 245 ± 20% body weight (BW) were generated in an anterior or braking direction to control descent. Horizontal GRFs tended to occur in a laterally directed fashion, reaching a peak of 45 ± 63% BW. The maximum vertical GRF averaged 202 ± 43% BW approximately 45 milliseconds after stride foot contact. A correlation between braking force and ball velocity was evident. Because of the downward inclination and rotation of the pitching motion, in addition to volume, shear forces may occur in the musculoskeletal tissues of the stride limb leading to many of the lower-extremity injuries seen in this athletic population.  相似文献   

11.
12.
ABSTRACT: Nakata, H, Miura, A, Yoshie, M, and Kudo, K. Differences in the head movement during baseball batting between skilled players and novices. J Strength Cond Res 26(10): 2632-2640, 2012-We investigated the pattern of head movement during baseball batting in 8 skilled players and 9 unskilled novices, using a high-speed video camera. The 2 directions of head movement were analyzed as an X-axis (from the home plate to the pitcher's plate) and Z-axis (vertical downward). On the X-axis, peak latency, peak value, the distance from the peak to the value at bat-ball impact, and data variability were compared between the 2 groups. On the Z-axis, peak latency, downward distance, and data variability were analyzed. Peak latency on the X-axis occurred significantly earlier in baseball players than in novices (p < 0.001), and the difference between the minimum peak and impact was significantly larger in the players (p < 0.05). The variability in peak latency on the X-axis was significantly larger in the novices (p < 0.05). The variability in peak value on the Z-axis was also significantly larger in the novices (p < 0.05). Our findings showed that the significant differences in head movement between the 2 groups should help baseball players, beginners, coaches, and strength and conditioning professionals to improve performance, be effectively applied to actual practice, and enhance coaching for batting.  相似文献   

13.
Voluntary arm-raising movement performed during the upright human stance position imposes a perturbation to an already unstable bipedal posture characterised by a high body centre of mass (CoM). Inertial forces due to arm acceleration and displacement of the CoM of the arm which alters the CoM position of the whole body represent the two sources of disequilibrium. A current model of postural control explains equilibrium maintenance through the action of anticipatory postural adjustments (APAs) that would offset any destabilising effect of the voluntary movement. The purpose of this paper was to quantify, using computer simulation, the postural perturbation due to arm raising movement. The model incorporated four links, with shoulder, hip, knee and ankle joints constrained by linear viscoelastic elements. The input of the model was a torque applied at the shoulder joint. The simulation described mechanical consequences of the arm-raising movement for different initial conditions. The variables tested were arm inertia, the presence or not of gravity field, the initial standing position and arm movement direction. Simulations showed that the mechanical effect of arm-raising movement was mainly local, that is to say at the level of trunk and lower limbs and produced a slight forward displacement of the CoM (1.5 mm). Backward arm-raising movement had the same effect on the CoM displacement as the forward arm-raising movement. When the mass of the arm was increased, trunk rotation increased producing a CoM displacement in the opposite direction when compared to arm movement performed without load. Postural disturbance was minimised for an initial standing posture with the CoM vertical projection corresponding to the ankle joint axis of rotation. When the model was reduced to two degrees of freedom (ankle and shoulder joints only) the postural perturbation due to arm-raising movement increased compared to the four-joints model. On the basis of these results the classical assumption that APAs stabilise the CoM is challenged.  相似文献   

14.
Effects of a 4-week youth baseball conditioning program on throwing velocity. This study examined the effects of a 4-week youth baseball conditioning program on maximum throwing velocity. Thirty-four youth baseball players (11-15 years of age) were randomly and equally divided into control and training groups. The training group performed 3 sessions (each 75 minutes) weekly for 4 weeks, which comprised a sport specific warm-up, resistance training with elastic tubing, a throwing program, and stretching. Throwing velocity was assessed initially and at the end of the 4-week conditioning program for both control and training groups. The level of significance used was p < 0.05. After the 4-week conditioning program, throwing velocity increased significantly (from 25.1 ± 2.8 to 26.1 ± 2.8 m·s) in the training group but did not significantly increase in the control group (from 24.2 ± 3.6 to 24.0 ± 3.9 m·s). These results demonstrate that the short-term 4-week baseball conditioning program was effective in increasing throwing velocity in youth baseball players. Increased throwing velocity may be helpful for pitchers (less time for hitters to swing) and position players (decreased time for a runner to advance to the next base).  相似文献   

15.
Quantification of rehabilitation progress is necessary for accurately assessing clinical treatments. A three-dimension (3D) upper extremity (UE) kinematic model was developed to obtain joint angles of the trunk, shoulder and elbow using a Vicon motion analysis system. Strict evaluation confirmed the system's accuracy and precision. As an example of application, the model was used to evaluate the upper extremity movement of eight hemiparetic stroke patients with spasticity, while completing a set of reaching tasks. Main outcome measures include kinematic variables of movement time, range of motion, peak angular velocity, and percentage of reach where peak velocity occurs. The model computed motion patterns in the affected and unaffected arms. The unaffected arm showed a larger range of motion and higher angular velocity than the affected arm. Frequency analysis (power spectrum) demonstrated lower frequency content for elbow angle and angular velocity in the affected limb when compared to the unaffected limb. The model can accurately quantify UE arm motion, which may aid in the assessment and planning of stroke rehabilitation, and help to shorten recovery time.  相似文献   

16.
The reasons why using the arms can increase standing vertical jump height are investigated by computer simulations. The human models consist of four/five segments connected by frictionless joints. The head-trunk-arms act as a fourth segment in the first model while the arms become a fifth segment in the second model. Planar model movement is actuated by joint torque generators. Each joint torque is the product of three variable functions of activation level, angular velocity dependence, and maximum isometric torque varying with joint angle. Simulations start from a balanced initial posture and end at jump takeoff. Jump height is maximized by finding the optimal combination of joint activation timings. Arm motion enhances jumping performance by increasing mass center height and vertical takeoff velocity. The former and latter contribute about 1/3 and 2/3 to the increased height, respectively. Durations in hip torque generation and ground contact period are lengthened by swinging the arms. Theories explaining the performance enhancement caused by arms are examined. The force transmission theory is questionable because shoulder joint force due to arm motion does not precisely reflect the change in vertical ground reaction force. The joint torque/work augmentation theory is acceptable only at the hips but not at the knees and ankles because only hip joint work is considerably increased. The pull/impart energy theory is also acceptable because shoulder joint work is responsible for about half of the additional energy created by arm swings.  相似文献   

17.
BACKGROUND. To describe 3D shoulder joint movements, the International Society of Biomechanics (ISB) recommends using segment coordinate systems (SCSs) on the humerus, scapula and thorax, and joint coordinate systems (JCSs) on the shoulder. However, one of the remaining problems is how to define the zero angles when the arm is in an initial reference position. The aim of this paper is to compare various methods of determining the JCSs of the shoulder that make it possible to define the zero angles of the arm in the resting position. METHODS. Able-bodied subjects performed elevation movements in the scapular plane, specifically neutral, internal and external rotations of the humerus. The initial humerus position (at the beginning of the arm movement) and range of motion were analysed for the purpose of clinical interpretation of arm attitude and movement. The following four different JCSs were explored: (1) the standard JCS, defined as recommended by the ISB, (2) a first aligned JCS, where the humerus SCS is initially aligned with the scapula SCS, (3) a second aligned JCS, where the opposite operation is performed and 4) a third aligned JCS, where both the humerus and the scapular SCS are initially aligned with the thorax SCS. FINDINGS. The second aligned JCS was the only method that did not produce any exaggerated range of movement in either anatomical plane. INTERPRETATION. Mathematical JCS alignment allows clearer clinical interpretation of arm attitude and movement.  相似文献   

18.
Although the belief that overuse can harm pitchers is widespread, there exists little evidence to show that the number of pitches thrown and the days of rest affect future performance and injury among adults. The purpose of this study is to quantify the effects of pitches thrown and the days of rest on pitcher performance. We examined performances of major-league baseball starting pitchers from 1988 to 2009 using fractional polynomial multiple regression to estimate the immediate and cumulative impact of pitches thrown and the days of rest on performance, while controlling for other factors that likely affect pitcher effectiveness. Estimates indicate each pitch thrown in the preceding game increased earned run average (ERA) by 0.007 in the following game. Each pitch averaged in the preceding 5 and 10 games increased the ERA by 0.014 and 0.022, respectively. Older pitchers were more sensitive to cumulative pitching loads than younger pitchers were, but they were less affected by pitches thrown in the preceding game. Rest days were weakly associated with performance. In summary, we found that there is a negative relationship between past pitches thrown and future performance that is virtually linear. The impact of the cumulative pitching load is larger than the impact of a single game. Rest days do not appear to have a large impact on performance. This study supports the popular notion that high pitching loads can dampen future performance; however, because the effect is small, pitch-count benchmarks have limited use for maintaining performance and possibly preventing injury.  相似文献   

19.
The aim of this study was to investigate the contribution of upper extremity, trunk, and lower extremity movements in overarm throwing in team handball. In total, 11 joint movements during the throw were analyzed. The analysis consists of maximal angles, angles at ball release, and maximal angular velocities of the joint movements and their timing during the throw. Only the elbow angle (extension movement range) and the level of internal rotation velocity of the shoulder at ball release showed a significant relationship with the throwing performance. Also, a significant correlation was found for the timing of the maximal pelvis angle with ball velocity, indicating that better throwers started to rotate their pelvis forward earlier during the throw. No other significant correlations were found, indicating that the role of the trunk and lower limb are of minor importance for team handball players.  相似文献   

20.
Optimal control simulations of the standing long jump were developed to gain insight into the mechanisms of enhanced performance due to arm motion. The activations that maximize standing long jump distance of a joint torque actuated model were determined for jumps with free and restricted arm movement. The simulated jump distance was 40 cm greater when arm movement was free (2.00 m) than when it was restricted (1.60 m). The majority of the performance improvement in the free arm jump was due to the 15% increase (3.30 vs. 2.86 m/s) in the take-off velocity of the center of gravity. Some of the performance improvement in the free arm jump was attributable to the ability of the jumper to swing the arms backwards during the flight phase to alleviate excessive forward rotation and position the body segments properly for landing. In restricted arm jumps, the excessive forward rotation was avoided by "holding back" during the propulsive phase and reducing the activation levels of the ankle, knee, and hip joint torque actuators. In addition, swinging the arm segments allowed the lower body joint torque actuators to perform 26 J more work in the free arm jump. However, the most significant contribution to developing greater take-off velocity came from the additional 80 J work done by the shoulder actuator in the jump with free arm movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号