首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated that during culture under 5% O(2,) the addition of recombinant human VEGF or FGF2 to mouse embryonic aorta explants (thoracic level to lateral vessels supplying the mesonephros and metanephros) stimulates microvessel formation. Here we show that microvessel formation is also stimulated by addition to explants of supernatants obtained from metanephroi grown in serum-free organ culture or of metanephroi extracts. Supernatants and extracts from metanephroi grown under hypoxic conditions are more stimulatory than supernatants/extracts from metanephroi grown in room air. VEGF and FGF2 can be detected by using immunohistochemistry in developing nephrons in the cultured renal anlagen. Metanephroi supernatants contain more VEGF if renal anlagen are grown under hypoxic conditions than if they are grown in room air. Metanephros supernatant-stimulated microvessel formation is completely inhibited by soluble sFlt-1 fusion protein or anti-VEGF antibodies (alphaVEGF). Extract-stimulated microvessel formation is inhibited by alphaVEGF or anti-FGF2 antibodies, or both. We conclude that metanephroi produce growth factors including VEGF and FGF that enhance microvessel formation from embryonic thoracic aorta in vitro.  相似文献   

2.
The immunoglobulin fraction prepared from the serum of a rabbit immunized with purified type II insulin-like growth factor (IGF) receptor from rat placenta was tested for its specificity in inhibiting receptor binding of 125I-IGF II and for its ability to modulate IGF II action on rat hepatoma H-35 cells. The specific binding of 125I-IGF II to plasma membrane preparations from several rat cell types and tissues was inhibited by the anti-IGF II receptor Ig. Affinity cross-linking of 125I-IGF II to the Mr = 250,000 type II IGF receptor structure in rat liver membranes was blocked by the anti-receptor Ig, while no effect on affinity labeling of insulin receptor with 125I-insulin or IGF I receptor with 125I-IGF I or 125I-IGF II was observed. The specific inhibition of ligand binding to the IGF II receptor by anti-receptor Ig was species-specific such that mouse receptor was less potently inhibited and human receptor was unaffected. Rat hepatoma H-35 cells contain insulin and IGF II receptor, but not IGF I receptor, and respond half-maximally to insulin at 10(-10) M and to IGF II at higher concentrations with increased cell proliferation (Massague, J., Blinderman, L.A., and Czech, M.P. (1982) J. Biol. Chem. 257, 13958-13963). Addition of anti-IGF II receptor Ig to intact H-35 cells inhibited the specific binding of 125I-IGF II to the cells by 70-90%, but had no detectable effect on 125I-insulin binding. Significantly, under identical conditions anti-IGF II receptor Ig was without effect on IGF II action on DNA synthesis at both submaximal and maximal concentrations of IGF II. This finding and the higher concentrations of IGF II required for growth promotion in comparison to insulin strongly suggest that the Mr = 250,000 receptor structure for IGF II is not involved in mediating this physiological response. Rather, at least in H-35 cells, the insulin receptor appears to mediate the effects of IGF II on cell growth. Consistent with this interpretation, anti-insulin receptor Ig but not anti-IGF II receptor Ig mimicked the ability of growth factors to stimulate DNA synthesis in H-35 cells. We conclude that the IGF II receptor may not play a role in transmembrane signaling, but rather serves some other physiological function.  相似文献   

3.
The objectives of this study were to determine whether the addition of growth hormone (GH) to maturation medium and GH or insulin-like growth factor-I (IGF-I) to culture medium affects development of cultured bovine embryos. We matured groups of 10 cumulus-oocyte complexes (COCs) in serum-free TCM-199 medium containing FSH and estradiol with or without 100 ng/ml GH. After fertilization, we transferred groups of 10 putative zygotes to 25 microl drops of a modified KSOM medium containing the following treatments: non-specific IgG (a control antibody, 10 microg/ml); GH (100 ng/ml) + IgG (10 microg/ml, GH/IgG); IGF-I (100 ng/ml) + IgG (10 microg/ml, IGF/IgG); antibody to IGF-I (10 microg/ml, anti-IGF); GH (100 ng/ml) + anti-IGF (10 microg/ml GH/anti-IGF); IGF-I (100 ng/ml) + anti-IGF (10 microg/ml, IGF/anti-IGF); no further additions (control). We repeated the experiment six times. Adding GH to the maturation medium increased cleavage rates at Day 3 compared to control (87.3 +/- 1.2% > 83.9 +/- 1.2%; P < 0.05) but had no effects on blastocyst development at Day 8. At Day 8, blastocyst development was greater (P < 0.01) for GH/IgG (24.8 +/- 2.5%) and IGF/IgG (33.7 +/- 2.5%) than for IgG (16.1 +/- 2.1%) and greater for IGF/IgG than for GH/IgG (P < 0.02). Blastocyst development at Day 8 did not differ between anti-IGF (20.4 +/- 1.8%) and GH/anti-IGF (24.1 +/- 1.9%) or IGF/anti-IGF (17.7 +/- 1.9%), but it was greater for GH/anti-IGF than for IGF/anti-IGF (P < 0.05). The Day 8 blastocysts of GH/IgG and IGF-I/IgG groups had a higher (P < 0.01) number of cells than the IgG group. The addition of anti-IGF-I eliminated the effects of IGF-I on cell number but did not alter GH effects. In conclusion, both GH and IGF-I stimulate embryonic development in cattle and GH effects may likely involve IGF-I-independent mechanisms.  相似文献   

4.
To evaluate the presence and regulation of the renin-angiotensin system (RAS) in metanephric organ culture, embryonic day 14 (E14) rat metanephroi were cultured for 6 days. mRNAs for renin and both ANG II receptors (AT(1) and AT(2)) are expressed at E14, and all three genes continue to be expressed in culture. Renin mRNA is localized to developing tubules and ureteral branches in the cultured explants. At E14, renin immunostaining is found in isolated cells scattered within the mesenchyme. As differentiation progresses, renin localizes to the ureteric epithelium, developing tubules and glomeruli. E14 metanephroi contain ANG II, and peptide production persists in culture. Renin activity is present at E14 (6.13 +/- 0.61 pg ANG I. kidney(-1). h(-1)) and in cultured explants (28.84 +/- 1. 13 pg ANG I. kidney(-1). h(-1)). Renin activity in explants is increased by ANG II treatment (70.1 +/- 6.36 vs. 40.97 +/- 1.94 pg ANG I. kidney(-1). h(-1) in control). This increase is prevented by AT(1) blockade, whereas AT(2) antagonism has no effect. These studies document an operational local RAS and a previously undescribed positive-feedback mechanism for renin generation in avascular, cultured developing metanephroi. This novel expression pattern and regulatory mechanism highlight the unique ability of developing renal cells to express an active RAS.  相似文献   

5.
6.
One solution to the shortage of human organs available for transplantation envisions growing new organs in situ. This can be accomplished by transplantation of developing organ anlagen/primordia. Allotransplantation of embryonic day 15 metanephroi into the omentum of adult hosts is followed by differentiation, growth, vascularization and function of the implants. Here we show that survival of rats with all native renal mass removed can be increased by prior metanephros transplantation and ureteroureterostomy. Excretion of urine formed by metanephroi is prerequisite for enhanced survival. This is the first demonstration that life can be extended following de novo renal organogenesis.  相似文献   

7.
Culture of preimplantation embryos is complex and requires strictly defined culture media to sustain their viability and quality. In the current study, an effort was made to evaluate comprehensively the quality of mice embryos, grown in media enriched with IGF I, IGF II, EGF and TNFalpha. For that purpose, critically chosen and thoroughly described, complex morphological methods based on contrast-phase, fluorescent and confocal microscopy were used. The study evaluated blastulation and hatching rates, total blastocyst cells, inner cell mass cell numbers (differential staining) as well as identified embryo cells with positive reactions for necrosis or apoptosis (TUNEL). The critical evaluation of the effects of the studied cytokines allowed for simultaneous, meticulous assessment of the applied study methods. Significantly more blastocysts were found in culture media enriched with IGF-I, IGF II and EGF. Significantly more hatched blastocysts were found in media with IGF-I and IGF II. Additionally, IGF I and II increased inner cell mass and total blastocyst cell numbers. Very few cells with necrosis and apoptosis were found in the culture media enriched with IGF I, IGF II and EGF. TNFalpha produced negative effects. The observed effects were dose-dependent.  相似文献   

8.
One solution to the shortage of human organs available for transplantation envisions growing new organs in situ. This can be accomplished by transplantation of developing organ anlagen/primordia. Allotransplantation of embryonic day 15 metanephroi into the omentum of adult hosts is followed by differentiation, growth, vascularization and function of the implants. Here we show that survival of rats with all native renal mass removed can be increased by prior metanephros transplantation and ureteroureterostomy. Excretion of urine formed by metanephroi is prerequisite for enhanced survival. This is the first demonstration that life can be extended following de novo renal organogenesis.Key Words: cell therapy, end-stage renal disease, kidney, metanephros, transplantation  相似文献   

9.
10.
The insulin-like growth factors I and II (IGF I and II) and their cell surface receptors are expressed in the mammalian embryo and may function as autocrine or paracrine growth factors during early development. P19 embryonic carcinoma cells, derived from a 7.5 day mouse embryo, were used as a model for a functional study of the IGF system in post-implantation embryogenesis. Undifferentiated P19 cells synthesized IGF I and II, the type I and II IGF receptors, and IGF binding proteins (IGF BP2, IGF BP3, and IGF BP4). P19 cells showed an increase in thymidine incorporation of 150% of control with a 4 hour incubation of IGF I (10 ng/ml) or IGF II (100 ng/ml) and an increase in cell viability compared to control cells during 24 hours of serum starvation. In both experiments IGF I was more potent than IGF II. Endogenous concentrations of IGF I and II in conditioned media were low compared to the doses of exogenous IGFs required for biologic effect, but nonetheless contributed significantly to baseline DNA synthesis, as demonstrated by inhibition of IGF actions with specific antibodies. Cell surface associated IGF BPs bound more radiolabeled IGF than IGF receptors, as determined by binding studies and affinity cross-linking. IGF I and IGF II appeared to regulate production of IGF BP2, suggesting that the IGFs may regulate their own actions by altering the abundance of their binding proteins. © 1993Wiley-Liss, Inc.  相似文献   

11.
《Organogenesis》2013,9(1):17-21
Hypoxia exists widely in developing embryos where it may regulate blood vessel formation. VEGF and FGF2 produced in developing renal primordia (metanephroi) stimulate microvessel formation from embryonic thoracic aorta cultured under hypoxic conditions (HC) relative to room air (RA). The aim of the present study was to provide insight into the participation of hypoxia in a process that occurs concomitant with metanephros vascularization in vivo, ureteric bud (UB) branching. To this end, the arborization of the UB and growth of metanephroi were measured in metanephroi grown in serum-free organ culture for 2 days under RA or HC. When metanephroi were cultured under HC the arborization of UB was stimulated relative to RA. In the presence of anti-VEGF neutralizing antibody (amVEGF), or anti-FGF2 neutralizing antibody (ahFGF2) UB branching was inhibited under both RA and HC. When both amVEGF and ahFGF2 were added, the inhibition was enhanced. Addition of exogenous VEGF or FGF2 to cultures stimulated UB branching under RA and HC and addition of both stimulated it further. These findings provide evidence for roles of hypoxia and metanephric VEGF and FGF2, as regulators not only for vascularization but also for UB bud branching during renal organogenesis.  相似文献   

12.
Insulin-like growth factors (IGF) or somatomedins (SM) have been classically defined as promoting the actions of growth hormone in skeletal growth. IGF is divided into two groups, IGF-I and II, and are presumed to act via IGF type I (higher affinity for IGF-I and II and very low affinity for insulin) and II (higher affinity for IGF-II than I and no affinity for insulin) receptors, respectively. Recently, a switchover role of IGF-II to I during fetal to adult growth has been suggested. We have investigated the possible transitional role of IGF-II to I in a developing mouse embryonic limb bud organ culture model. In this in vitro system, limb bud develops from the blastoma stage to a well-differentiated cartilage tissue. Both IGF type I and II receptors were found to be present in limb buds at all stages of differentiation. Type I receptor decreased with differentiation while Type II receptor increased. The effect of IGF-I on [3H]thymidine and [35S]sulfate uptake by the tissue increased with differentiation while the effect of IGF-II on [3H]thymidine uptake of the undifferentiated tissue was abolished with differentiation of the tissue. The increase of the IGF-I response with decreased type I receptor may reflect an altered receptor sensitivity (occupancy) during differentiation. The decrease of the IGF-II response with increased type II receptor with differentiation may on the other hand suggest that IGF-II in differentiated tissue no longer acts as a classical growth factor. These results tend to support the hypothesis of the switchover role of IGF-I and II during fetal and adult growth, however, confirmation of the precise role of IGF-I and II in biological growth may have to wait until further studies clarifying the significance of the increased IGF type II receptor in differentiated tissue are made.  相似文献   

13.
Hypoxia exists widely in developing embryos where it may regulate blood vessel formation. VEGF and FGF2 produced in developing renal primordia (metanephroi) stimulate microvessel formation from embryonic thoracic aorta cultured under hypoxic conditions (HC) relative to room air (RA). The aim of the present study was to provide insight into the participation of hypoxia in a process that occurs concomitant with metanephros vascularization in vivo, ureteric bud (UB) branching. To this end, the arborization of the UB and growth of metanephroi were measured in metanephroi grown in serum-free organ culture for two days under RA or HC. When metanephroi were cultured under HC the arborization of UB was stimulated relative to RA. In the presence of anti-VEGF neutralizing antibody (αmVEGF), or anti-FGF2 neutralizing antibody (αhFGF2) UB branching was inhibited under both RA and HC. When both αmVEGF and αhFGF2 were added, the inhibition was enhanced. Addition of exogenous VEGF or FGF2 to cultures stimulated UB branching under RA and HC and addition of both stimulated it further. These findings provide evidence for roles of hypoxia and metanephric VEGF and FGF2, as regulators not only for vascularization but also for UB bud branching during renal organogenesis.Key Words: metanephroi, embryogenesis, fibroblast growth factor, vascular endothelial growth factor  相似文献   

14.
Gene expression, receptor binding and growth-promoting activity of insulin-like growth factor I (IGF I) was studied in cultured astrocytes from developing rat brain. Northern blot analysis of poly(A)+ RNAs from astrocytes revealed an IGF I mRNA of 1.9 kb. Competitive binding and receptor labelling techniques revealed two types of IGF receptor in astroglial cells. Type I IGF receptors consist of alpha-subunits (Mr 130,000) which bind IGF I with significantly higher affinity than IGF II, and beta-subunits (Mr 94,000) which show IGF I-sensitive tyrosine kinase activity. Type II IGF receptors are monomers (Mr 250,000) which bind IGF II with three times higher affinity than IGF I. Both types of IGF receptor recognize insulin weakly. DNA synthesis measured by cellular thymidine incorporation was stimulated 2-fold by IGF I and IGF II. IGF I was more potent than IGF II, and both were significantly more potent than insulin. Our findings suggest that IGF I is synthesized in fetal rat astrocytes and acts as a growth promoter for the same cells by activation of the type I IGF receptor tyrosine kinase. We propose that IGF I acts through autocrine or paracrine mechanisms to stimulate astroglial cell growth during normal brain development.  相似文献   

15.
VEGF spatially directs angiogenesis during metanephric development in vitro   总被引:5,自引:0,他引:5  
Vascular endothelial growth factor (VEGF) is required for endothelial cell differentiation, vasculogenesis, and normal glomerular vascularization. To examine whether VEGF plays a role as a chemoattractant for the developing kidney vasculature, avascular metanephric kidneys from rat embryos (E14) were cocultured with endothelial cells. To determine whether VEGF directly provides chemoattractive guidance for migration, we examined migration of endothelial cells toward VEGF-coated beads. Mouse glomerular endothelial cells expressing beta-galactosidase (MGEC) were isolated from Flk-1(+/-) heterozygous mice and passaged 4-12 times. Upon 24 h culture on collagen I gels MGEC formed a lattice or capillary-like network. Embryonic metanephroi were cocultured with MGEC on collagen I gels for 1-6 days in defined media, stained for beta-galactosidase, and examined by light microscopy. Metanephric organs induced a rearrangement of the endothelial cell lattice and attracted MGEC. MGEC invaded the metanephric organs forming capillary-like structures within and surrounding the forming nephrons. This process was accelerated and amplified by low oxygen (3% O(2)) and was prevented by anti-VEGF neutralizing antibodies. MGECs migrated toward VEGF-coated beads, whereas PBS-coated beads did not alter MGEC networks. We conclude that VEGF produced by the differentiating nephrons acts as a chemoattractant providing spatial direction to developing capillaries toward forming nephrons during metanephric development in vitro.  相似文献   

16.
One novel solution to the shortage of human organs available for transplantation envisions ‘growing’ new organs in situ. This can be accomplished by transplantation of developing organ anlagen/primordia. We and others have shown that renal anlagen (metanephroi) transplanted into animal hosts undergo differentiation and growth, become vascularized by blood vessels of host origin and exhibit excretory function. Metanephroi can be stored for up to 3 days in vitro prior to transplantation with no impairment in growth or function post-implantation. Metanephroi can be transplanted across both concordant (rat to mouse) and highly disparate (pig to rodent) xenogeneic barriers. Similarly, pancreatic anlagen can be transplanted across concordant and highly disparate barriers, and undergo growth, differentiation and secrete insulin in a physiological manner following intra-peritoneal placement. Implantation of the embryonic pancreas, is followed by selective differentiation of islet components. Here we review studies exploring the potential therapeutic applicability for organogenesis of the kidney or endocrine pancreas.  相似文献   

17.
Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and appears to arise from developing striated muscle-forming cells. Since insulin-like growth factor II (IGF-II) is involved in normal muscle growth and maturation and elevated IGF-II mRNA levels have previously been reported in rhabdomyosarcomas, we have been studying the possible role of IGF-II in the unregulated growth and invasive potential of these embryonal tumors. In this study, we demonstrate that 13 of 14 rhabdomyosarcoma tumors express high levels of IGF-II mRNA relative to normal adult muscle and also express mRNA for the type I IGF receptors on their cell surface, the receptor thought to mediate the effects of IGF-II on muscle cells. We have established several rhabdomyosarcoma cell lines in mitogen-free media and demonstrate that these cells express type I IGF receptors on their cell surface and secrete IGF-II into the media. Exogenous IGF-II is able to stimulate cellular motility in these cell lines as assayed in a modified Boyden chamber. Finally, alpha IR-3, a type I receptor antagonist, inhibits the growth of these cell lines in serum-free media but does not inhibit IGF-II-induced motility of these cells. These data suggest that endogenously produced IGF-II functions as an autocrine growth and motility factor in many rhabdomyosarcoma tumors. The mitogenic actions of IGF-II are mediated through a domain of the type I IGF receptor that is blocked by alpha IR-3. IGF-II-induced motility may be mediated through an alternative signaling pathway.  相似文献   

18.
Two types of receptor for insulin-like growth factors (IGFs) have been identified on adult rat and human brain plasma membranes by competitive binding assay, affinity labelling, receptor phosphorylation and interaction with antibodies to insulin receptors. The type I IGF receptor consists of two species of subunits: alpha-subunits (mol. wt. approximately 115 000), which bind IGF I and IGF II with almost equal affinity and beta-subunits (mol. wt. approximately 94 000), the phosphorylation of which is stimulated by IGFs. The alpha-subunits of type I IGF receptors in brain and other tissues differ significantly (mol. wt. approximately 115 000 versus 130 000), whereas the beta-subunits are identical (mol. wt. approximately 94 000). The type II IGF receptor in brain is a monomer (mol. wt. approximately 250 000) like that in other tissues. Two antibodies to insulin receptors, B2 and B9, interact with type I but not with type II IGF receptors. B2 is more potent than B9 in inhibiting IGF binding and in immunoprecipitating type I IGF receptors, in contrast to their almost equal effects on insulin receptors. This pattern is characteristic for IGF receptors in other cells. The presence of two types of IGF receptor in mammalian brain suggests a physiological role of IGFs in regulation of nerve cell function and growth. Since IGF II, but not IGF I, is present in human brain, we propose that IGF II interacts with both types of IGF receptor to induce its biological actions.  相似文献   

19.
By using an organ culture technique, corneal endothelial cells in human embryonic eyes could be stimulated to initiate DNA synthesis by exposure to insulin like growth factor II (IGF-II). The thymidine-labelling index doubled after IGF-II supplementation. However, this stimulatory effect was neither augmented nor abrogated by the simultaneous addition of Mannose-6-Phosphate. Nor did Mannose-6-phosphate stimulate DNA synthesis in the absence of IGF II. In contrast, the IGF II effect was partly counteracted by addition of an antibody that blocks binding to the IGF type I receptor. Taken together, this data suggests that IGF II stimulates DNA-synthesis in corneal endothelium by binding to the IGF type I rather than the IGF type II/ mannose-6-phosphate receptor.  相似文献   

20.
Insulin-like growth factors (IGFs) I and II are homologous peptides, which stimulate growth of several vertebrate tissues. Expression of IGF I and IGF II genes and production of IGFs have recently been demonstrated in rat and human brain. In search for the function of IGF I and IGF II in the central nervous system, we have studied IGF receptors in fetal and adult mammalian brain and growth effects of IGFs on primary cultures of fetal rat astrocytes. Two types of IGF receptor are present on adult rat brain cortical plasma membranes, on fetal rat astrocytes and on human glioma cells. Type I IGF receptor is composed of 2 types of subunits: alpha-subunits which bind IGF I and IGF II with high affinity and insulin weakly, and beta-subunits which show tyrosine kinase activity and autophosphorylation stimulated by IGF I and IGF II with almost similar potency. The molecular size of the type I IGF receptor alpha-subunit is larger in cultured fetal rat astrocytes and human glioma cells than in normal adult brain (Mr 130,000 versus 115,000), whereas the beta-subunit has the same electrophoretic mobility (Mr 94,000). The type II IGF receptor is a monomeric protein (Mr 250,000), which binds IGF II 5 times better than IGF I, and does not recognize insulin. The amounts of type II IGF receptor are significantly higher in fetal and malignant cells than in adult brain. Based on these findings we suggest that IGF receptors in brain undergo changes during fetal development and malignant transformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号