首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Kim Y  Kwak GH  Lee C  Kim HY 《BMB reports》2011,44(10):669-673
Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic α-helical segment that contains 4 cysteine residues. The potential α-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.  相似文献   

2.
Crotonobetaine reductase from Escherichia coli consists of two proteins   总被引:1,自引:0,他引:1  
Crotonobetaine reductase from Escherichia coli is composed of two proteins (component I (CI) and component II (CII)). CI has been purified to electrophoretic homogeneity from a cell-free extract of E. coli O44 K74. The purified protein shows l(-)-carnitine dehydratase activity and its N-terminal amino acid sequence is identical to the caiB gene product from E. coli O44 K74. The relative molecular mass of CI has been determined to be 86100. It is composed of two identical subunits with a molecular mass of 42600. The isoelectric point of CI was found to be 4.3. CII was purified from an overexpression strain in one step by ion exchange chromatography on Fractogel EMD TMAE 650(S). The N-terminal amino acid sequence of CII shows absolute identity with the N-terminal sequence of the caiA gene product, i.e. of the postulated crotonobetaine reductase. The relative molecular mass of the protein is 164400 and it is composed of four identical subunits of molecular mass 41500. The isoelectric point of CII is 5.6. CII contains non-covalently bound FAD in a molar ratio of 1:1. In the crotonobetaine reductase reaction one dimer of CI associates with one tetramer of CII. A still unknown low-molecular-mass effector described for the l(-)-carnitine dehydratase is also necessary for crotonobetaine reductase activity. Monoclonal antibodies were raised against the two components of crotonobetaine reductase.  相似文献   

3.
Recombinant plasmids containing all or part of the genetic region of Escherichia coli coding for the two subunits of ribonucleoside diphosphate reductase (proteins B1 and B2) were constructed with the aid of the multicopy plasmid pBR322. Two of these plasmids (pPS1 and pPS2) appeared to carry both a regulator and the complete structural information for the enzyme and, after transformation of E. coli, directed a 10- to 20-fold overproduction of both proteins B1 and B2. The other plasmids (pPS101 and pPS201) carried structural information for only protein B2. Cells carrying pPS1 and pPS2 showed a 5- to 500-fold increased resistance against the drug hydroxyurea. This establishes that in E. coli the inhibition of deoxyribonucleic acid synthesis by hydroxyurea is fully explained by its action on ribonucleotide reductase.  相似文献   

4.
Heparin-agarose and single-stranded DNA-cellulose chromatography were used to purify RNA polymerase 25-fold from Neisseria gonorrhoeae, and the activity of the polymerase was characterized in altered assay systems. The core subunits (beta, beta', and alpha) were tentatively identified as major proteins copurifying with polymerase activity. The identification of the core subunits was confirmed by Western (immunoblot) analysis with polyclonal antisera to Escherichia coli core RNA polymerase. Gonococcal sigma factor heterogeneity was examined by Western blot analysis with polyclonal antiserum to the major E. coli sigma factor, sigma 70, to the E. coli heat shock sigma factor, sigma 32, and with a monoclonal antiserum to Salmonella typhimurium NtrA (sigma 54). Purified RNA polymerase and whole-cell extracts from type 1, type 4, heat-shocked, and anaerobically grown gonococci were examined. Four putative gonococcal sigma factors were detected in purified RNA polymerase preparations and in whole-cell extracts from all cell types. Two of these bands appeared as a doublet, which had an estimated Mr of 80,000. A single lower-Mr band, estimated to be 40,000, was also present. All three of these bands reacted with antisera to E. coli sigma 70 and to E. coli sigma 32. A fourth gonococcal protein reacted solely with a highly specific monoclonal antibody to sigma 54 and had an Mr of 90,000. We conclude that N. gonorrhoeae may contain multiple sigma factors, which it may use to regulate gene expression.  相似文献   

5.
6.
An analysis of the peptide maps of the sigma factors and core-associated subunits of Bacillus subtilis RNA polymerase has revealed that all the sigma factors ad core-associated polypeptides are derived from separate genes and are not proteolytically modified products of the major 55,000-dalton sigma factor. A comparison of the peptide pattern of the major B. subtilis and Escherichia coli sigma factors revealed limited homology between them. Furthermore, antibody prepared against the 55,000-dalton B. subtilis sigma factor cross-reacted against the E. coli sigma factor, but not against any of the other B. subtilis sigma factors and core-associated polypeptides. These results unambiguously demonstrate the independently derived nature of the B. subtilis RNA polymerase core-associated subunits and the partial relationship between the major sigma factors of B. subtilis and E. coli.  相似文献   

7.
The fumarate reductase of Escherichia coli is a bioenergetically important membrane-bound flavoenzyme consisting of four subunits. A and B comprise a membrane-extrinsic catalytic domain whereas C and D are hydrophobic polypeptides which link the catalytic centres to the electron-transport chain. The nucleotide sequence of the frd operon encoding the fumarate reductase of the distantly related bacterium, Proteus vulgaris has been determined and used to predict the primary structures of the respective subunits. Extensive amino acid sequence identity (greater than 80%) was found between the fumarate reductase A and B subunits of P. vulgaris and E. coli. In contrast, the primary structures of the P. vulgaris and E. coli C and D proteins are much less closely related (about 60% homology) although the overall hydrophobicity of their three membrane-spanning segments has been conserved. In most enteric bacteria, the frd operon is followed by genes, ampR and/or ampC, required for the genetic regulation and biosynthesis of a cephalosporinase. The corresponding region of the P. vulgaris genome is occupied by an operon (orf A'BCD) containing at least four genes which are clearly unrelated to the ampC system. Intriguingly the primary structures of the OrfA and OrfD proteins suggest that, like fumarate reductase, they may be components of a membrane-bound enzyme complex involved in energy metabolism.  相似文献   

8.
Down syndrome (DS) is the most common human chromosomal abnormality caused by an extra copy of chromosome 21 and characterized by somatic anomalies and mental retardation. The phenotype of DS is thought to result from overexpression of genes encoded on chromosome 21. Although several studies reported mRNA levels of genes localized on chromosome 21, mRNA data cannot be simply extrapolated to protein levels. Furthermore, most protein data have been generated using immunochemical methods. In this study we investigated expression of three proteins (cystathionine beta-synthase (CBS), pyridoxal kinase (PDXK), ES1 protein homolog, mitochondrial precursor (ES1)) whose genes are encoded on chromosome 21 in fetal DS (n = 8; mean gestational age of 19.8 +/- 2.0 weeks) and controls (n = 7; mean gestational age of 18.8 +/- 2.2 weeks) brains (cortex) using proteomic technologies. Two-dimensional electrophoresis (2-DE) with subsequent in-gel digestion of spots and matrix-assisted laser desorption ionization (MALDI) spectroscopic identification followed by quantification of spots with specific software was applied. Subsequent quantitative analysis of CBS and PDXK revealed levels comparable between DS and controls. By contrast, ES1 was two-fold elevated (P < 0.01) in fetal DS brain. This protein shows significant homology with the E. coli SCRP-27A/ELBB and zebrafish ES1 protein and contains a potential targeting sequence to mitochondria in its N-terminal region. Based on the assumption that structural similarities reflect functional relationship, it may be speculated that ES1 is serving a basic function in mitochondria. Although no function of the human ES1 protein is known yet, ES1 may be a candidate protein involved in the pathogenesis of the brain deficit in DS.  相似文献   

9.
10.
11.
12.
13.
14.
C Li  H D Peck  A E Przybyla 《Gene》1987,53(2-3):227-234
The structural genes for 3'-phosphoadenylyl sulfate (PAPS) reductase (cysH) and sulfite reductase (alpha and beta subunits; EC 1.8.1.2)(cysI and cysJ) of Escherichia coli K-12 have been cloned by complementation. pCYSI contains two PstI fragments (18.3 and 2.9 kb) which complement cysH-, cysI-, and cysJ- mutants. Subcloning showed that the cysH gene is located on a 1.6-kb ClaI subfragment (pCYSI-3) whereas cysI and most of cysJ are carried on a 3.7-kb ClaI subfragment (pCYSI-5). The PAPS reductase gene is closely linked to the sulfite reductase genes, but its expression is regulated by a unique promoter. The cysI and cysJ genes, on the other hand, are transcribed as an operon and the promoter precedes the cysI gene. Maxicell analysis demonstrated that pCYSI encodes three polypeptides of Mr 27,000, 57,000, and 60,000, in addition to the tetracycline-resistance determinant. The 60- and 57-kDa proteins are most likely the alpha and beta subunits, respectively, of E. coli sulfite reductase while the 27-kDa protein is putatively identified as PAPS reductase. Preliminary data suggest that the alpha and beta subunits of sulfite reductase are encoded by cysI and cysJ, respectively.  相似文献   

15.
16.
17.
The nitrile hydratase (NHase) of Pseudomonas chlororaphis B23, which is composed of two subunits, alpha and beta, catalyzes the hydration of nitrile compounds to the corresponding amides. The NHase gene of strain B23 was cloned into Escherichia coli by the DNA-probing method with the NHase gene of Rhodococcus sp. strain N-774 as the hybridization probe. Nucleotide sequencing revealed that an amidase showing significant similarity to the amidase of Rhodococcus sp. strain N-774 was also coded by the region just upstream of the subunit alpha-coding sequence. In addition to these three proteins, two open reading frames, P47K and OrfE, were found just downstream of the coding region of subunit beta. The direction and close locations to each other of these open reading frames encoding five proteins (amidase, subunits alpha and beta, P47K, and OrfE, in that order) suggested that these genes were cotranscribed by a single mRNA. Plasmid pPCN4, in which a 6.2-kb sequence covering the region coding for these proteins is placed under control of the lac promoter, directed overproduction of enzymatically active NHase and amidase in response to addition of isopropyl-beta-D-thiogalactopyranoside. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell extract showed that the amount of subunits alpha and beta of NHase was about 10% of the total cellular proteins and that an additional 38-kDa protein probably encoded by the region upstream of the amidase gene was also produced in a large amount. The 38-kDa protein, as well as P47K and OrfE, appeared to be important for efficient expression of NHase activity in E. coli cells, because plasmids containing the NHase and amidase genes but lacking the region coding for the 38-kDa protein or the region coding for P47K and OrfE failed to express efficient NHase activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号