首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Izard T  Geerlof A 《The EMBO journal》1999,18(8):2021-2030
Phosphopantetheine adenylyltransferase (PPAT) is an essential enzyme in bacteria that catalyses a rate-limiting step in coenzyme A (CoA) biosynthesis, by transferring an adenylyl group from ATP to 4'-phosphopantetheine, yielding dephospho-CoA (dPCoA). Each phosphopantetheine adenylyltransferase (PPAT) subunit displays a dinucleotide-binding fold that is structurally similar to that in class I aminoacyl-tRNA synthetases. Superposition of bound adenylyl moieties from dPCoA in PPAT and ATP in aminoacyl-tRNA synthetases suggests nucleophilic attack by the 4'-phosphopantetheine on the alpha-phosphate of ATP. The proposed catalytic mechanism implicates transition state stabilization by PPAT without involving functional groups of the enzyme in a chemical sense in the reaction. The crystal structure of the enzyme from Escherichia coli in complex with dPCoA shows that binding at one site causes a vice-like movement of active site residues lining the active site surface. The mode of enzyme product formation is highly concerted, with only one trimer of the PPAT hexamer showing evidence of dPCoA binding. The homologous active site attachment of ATP and the structural distribution of predicted sequence-binding motifs in PPAT classify the enzyme as belonging to the nucleotidyltransferase superfamily.  相似文献   

2.
Aggretin is a C-type lectin purified from Calloselasma rhodostoma snake venom. It is a potent activator of platelets, resulting in a collagen-like response by binding and clustering platelet receptor CLEC-2. We present here the crystal structure of aggretin at 1.7 A which reveals a unique tetrameric quaternary structure. The two alphabeta heterodimers are arranged through 2-fold rotational symmetry, resulting in an antiparallel side-by-side arrangement. Aggretin thus presents two ligand binding sites on one surface and can therefore cluster ligands in a manner reminiscent of convulxin and flavocetin. To examine the molecular basis of the interaction with CLEC-2, we used a molecular modeling approach of docking the aggretin alphabeta structure with the CLEC-2 N-terminal domain (CLEC-2N). This model positions the CLEC-2N structure face down in the "saddle"-shaped binding site which lies between the aggretin alpha and beta lectin-like domains. A 2-fold rotation of this complex to generate the aggretin tetramer reveals dimer contacts for CLEC-2N which bring the N- and C-termini into the proximity of each other, and a series of contacts involving two interlocking beta-strands close to the N-terminus are described. A comparison with homologous lectin-like domains from the immunoreceptor family reveals a similar but not identical dimerization mode, suggesting this structure may represent the clustered form of CLEC-2 capable of signaling across the platelet membrane.  相似文献   

3.
BACKGROUND: S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical regulatory enzyme of the polyamine synthetic pathway, and a well-studied drug target. The AdoMetDC decarboxylation reaction depends upon a pyruvoyl cofactor generated via an intramolecular proenzyme self-cleavage reaction. Both the proenzyme-processing and substrate-decarboxylation reactions are allosterically enhanced by putrescine. Structural elucidation of this enzyme is necessary to fully interpret the existing mutational and inhibitor-binding data, and to suggest further experimental studies. RESULTS: The structure of human AdoMetDC has been determined to 2.25 A resolution using multiwavelength anomalous diffraction (MAD) phasing methods based on 22 selenium-atom positions. The quaternary structure of the mature AdoMetDC is an (alpha beta)2 dimer, where alpha and beta represent the products of the proenzyme self-cleavage reaction. The architecture of each (alpha beta) monomer is a novel four-layer alpha/beta-sandwich fold, comprised of two antiparallel eight-stranded beta sheets flanked by several alpha and 3(10) helices. CONCLUSIONS: The structure and topology of AdoMetDC display internal symmetry, suggesting that this protein may be the product of an ancient gene duplication. The positions of conserved, functionally important residues suggest the location of the active site and a possible binding site for the effector molecule putrescine.  相似文献   

4.
The X-ray crystal structure of the human alpha-thrombin-hirunorm IV complex has been determined at 2.5 A resolution, and refined to an R-factor of 0.173. The structure reveals an inhibitor binding mode distinctive of a true hirudin mimetic, which justifies the high inhibitory potency and the selectivity of hirunorm IV. This novel inhibitor, composed of 26 amino acids, interacts through the N-terminal end with the alpha-thrombin active site in a nonsubstrate mode, and binds specifically to the fibrinogen recognition exosite through the C-terminal end. The backbone of the N-terminal tripeptide Chg1"-Arg2"-2Na13" (Chg, cyclohexyl-glycine; 2Na1, beta-(2-naphthyl)-alanine) forms a parallel beta-strand to the thrombin main-chain segment Ser214-Gly216. The Chg1" side chain occupies the S2 site, Arg2" penetrates into the S1 specificity site, while the 2Na13" side chain occupies the aryl binding site. The Arg2" side chain enters the S1 specificity pocket from a position quite apart from the canonical P1 site. This notwithstanding, the Arg2" side chain establishes the typical ion pair with the carboxylate group of Asp189.  相似文献   

5.
The ability to form and control both secondary structure and oligomerization in short peptides has proven to be challenging owing to the structural instability of such peptides. The conantokin peptides are a family of γ-carboxyglutamic acid containing peptides produced in the venoms of predatory sea snails of the Conus family. They are examples of short peptides that form stable helical structures, especially in the presence of divalent cations. Both monomeric and dimeric conantokin peptides have been identified and represent a new mechanism of helix association, “the metallozipper motif” that is devoid of a hydrophobic interface between monomers. In the present study, a parallel/antiparallel three-helix bundle was identified and its crystal structure determined at high resolution. The three helices are almost perfectly parallel and represent a novel helix–helix association. The trimer interface is dominated by metal chelation between the three helices, and contains no interfacial hydrophobic interactions. It is now possible to produce stable monomeric, dimeric, or trimeric metallozippers depending on the peptide sequence and metal ion. Such structures have important applications in protein design.  相似文献   

6.
BACKGROUND: Intradiol dioxygenases catalyze the critical ring-cleavage step in the conversion of catecholate derivatives to citric acid cycle intermediates. Catechol 1,2-dioxygenases (1, 2-CTDs) have a rudimentary design structure - a homodimer with one catalytic non-heme ferric ion per monomer, that is (alphaFe(3+))(2). This is in contrast to the archetypical intradiol dioxygenase protocatechuate 3,4-dioxygenase (3,4-PCD), which forms more diverse oligomers, such as (alphabetaFe(3+))(2-12). RESULTS: The crystal structure of 1,2-CTD from Acinetobacter sp. ADP1 (Ac 1,2-CTD) was solved by single isomorphous replacement and refined to 2.0 A resolution. The structures of the enzyme complexed with catechol and 4-methylcatechol were also determined at resolutions of 1.9 A and 1.8 A, respectively. While the characteristics of the iron ligands are similar, Ac 1,2-CTD differs from 3,4-PCDs in that only one subunit is used to fashion each active-site cavity. In addition, a novel 'helical zipper', consisting of five N-terminal helices from each subunit, forms the molecular dimer axis. Two phospholipids were unexpectedly found to bind within an 8 x 35 A hydrophobic tunnel along this axis. CONCLUSIONS: The helical zipper domain of Ac 1, 2-CTD has no equivalent in other proteins of known structure. Sequence analysis suggests the domain is a common motif in all members of the 1,2-CTD family. Complexes with catechol and 4-methylcatechol are the highest resolution complex structures to date of an intradiol dioxygenase. Furthermore, they confirm several observations seen in 3,4-PCDs, including ligand displacement upon binding exogenous ligands. The structures presented here are the first of a new family of intradiol dioxygenases.  相似文献   

7.
The crystal structures of the apo and mannose-bound Parkia platycephala seed lectin represent the first structure of a Mimosoideae lectin and a novel circular arrangement of beta-prism domains, and highlight the adaptability of the beta-prism fold as a building block in the evolution of plant lectins. The P.platycephala lectin is a dimer both in solution and in the crystals. Mannose binding to each of the three homologous carbohydrate-recognition domains of the lectin occurs through different modes, and restrains the flexibility of surface-exposed loops and residues involved in carbohydrate recognition. The planar array of carbohydrate-binding sites on the rim of the toroid-shaped structure of the P.platycephala lectin dimer immediately suggests a mechanism to promote multivalent interactions leading to cross-linking of carbohydrate ligands as part of the host strategy against phytopredators and pathogens. The cyclic structure of the P.platycephala lectin points to the convergent evolution of a structural principle for the construction of lectins involved in host defense or in attacking other organisms.  相似文献   

8.
The essential RNA helicase, Mtr4, performs a critical role in RNA processing and degradation as an activator of the nuclear exosome. The molecular basis for this vital function is not understood and detailed analysis is significantly limited by the lack of structural data. In this study, we present the crystal structure of Mtr4. The structure reveals a new arch‐like domain that is specific to Mtr4 and Ski2 (the cytosolic homologue of Mtr4). In vivo and in vitro analyses demonstrate that the Mtr4 arch domain is required for proper 5.8S rRNA processing, and suggest that the arch functions independently of canonical helicase activity. In addition, extensive conservation along the face of the putative RNA exit site highlights a potential interface with the exosome. These studies provide a molecular framework for understanding fundamental aspects of helicase function in exosome activation, and more broadly define the molecular architecture of Ski2‐like helicases.  相似文献   

9.
dUTPase is an essential enzyme involved with nucleotide metabolism and replication. We report here the X-ray structure of Trypanosoma cruzi dUTPase in its native conformation and as a complex with dUDP. These reveal a novel protein fold that displays no structural similarities to previously described dUTPases. The molecular unit is a dimer with two active sites. Nucleotide binding promotes extensive structural rearrangements, secondary structure remodeling, and rigid body displacements of 20 A or more, which effectively bury the substrate within the enzyme core for the purpose of hydrolysis. The molecular complex is a trapped enzyme-substrate arrangement which clearly demonstrates structure-induced specificity and catalytic potential. This enzyme is a novel dUTPase and therefore a potential drug target in the treatment of Chagas' disease.  相似文献   

10.
A pseudoknot-containing aptamer isolated from a pool of random sequence molecules has been shown previously to represent an optimal RNA solution to the problem of binding biotin. The affinity of this RNA molecule is nonetheless orders of magnitude weaker than that of its highly evolved protein analogs, avidin and streptavidin. To understand the structural basis for biotin binding and to compare directly strategies for ligand recognition available to proteins and RNA molecules, we have determined the 1.3 A crystal structure of the aptamer complexed with its ligand. Biotin is bound at the interface between the pseudoknot's stacked helices in a pocket defined almost entirely by base-paired nucleotides. In comparison to the protein avidin, the aptamer packs more tightly around the biotin headgroup and makes fewer contacts with its fatty acid tail. Whereas biotin is deeply buried within the hydrophobic core in the avidin complex, the aptamer relies on a combination of hydrated magnesium ions and immobilized water molecules to surround its ligand. In addition to demonstrating fundamentally different approaches to molecular recognition by proteins and RNA, the structure provides general insight into the mechanisms by which RNA function is mediated by divalent metals.  相似文献   

11.
Dihydroneopterin aldolase (DHNA) catalyses a retroaldol reaction yielding 6-hydroxymethyl-7,8-dihydropterin, a biosynthetic precursor of the vitamin, tetrahydrofolate. The enzyme is a potential target for antimicrobial and anti-parasite chemotherapy. A gene specifying a dihydroneopterin aldolase from Arabidopsis thaliana was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified to apparent homogeneity and crystallised using polyethylenglycol as the precipitating agent. The crystal structure was solved by X-ray diffraction analysis at 2.2 Å resolution. The enzyme forms a D4-symmetric homooctamer. Each polypeptide chain is folded into a single domain comprising an antiparallel four-stranded β-sheet and two long α-helices. Four monomers are arranged in a tetrameric ring, and two of these rings form a hollow cylinder. Well defined purine derivatives are found at all eight topologically equivalent active sites. The subunit fold of the enzyme is related to substructures of dihydroneopterin triphosphate epimerase, GTP cyclohydrolase I, and pyruvoyltetrahydropterin synthase, which are all involved in the biosynthesis of pteridine type cofactors, and to urate oxidase, although some members of that superfamily have no detectable sequence similarity. Due to structural and mechanistical differences of DHNA in comparison with class I and class II aldolases, a new aldolase class is proposed.  相似文献   

12.
Reef-building corals contain host pigments, termed pocilloporins, that function to regulate the light environment of their resident microalgae by acting as a photoprotectant in excessive sunlight. We have determined the crystal structure of an intensely blue, nonfluorescent pocilloporin to 2.2 A resolution and a genetically engineered fluorescent variant to 2.4 A resolution. The pocilloporin chromophore structure adopts a markedly different conformation in comparison with the DsRed chromophore, despite the chromophore sequences (Gln-Tyr-Gly) being identical; the tyrosine ring of the pocilloporin chromophore is noncoplanar and in the trans configuration. Furthermore, the fluorescent variant adopted a noncoplanar chromophore conformation. The data presented here demonstrates that the conformation of the chromophore is highly dependent on its immediate environment.  相似文献   

13.
In this paper, we demonstrate that a protein from Bacillus subtilis (YqjM) shares many characteristic biochemical properties with the homologous yeast Old Yellow Enzyme (OYE); the enzyme binds FMN tightly but noncovalently, preferentially uses NADPH as a source of reducing equivalents, and forms charge transfer complexes with phenolic compounds such as p-hydroxybenzaldehyde. Like yeast OYE and other members of the family, YqjM catalyzes the reduction of the double bond of an array of alpha,beta-unsaturated aldehydes and ketones including nitroester and nitroaromatic compounds. Although yeast OYE was the first member of this family to be discovered in 1933 and was the first flavoenzyme ever to be isolated, the physiological role of the family still remains obscure. The finding that alpha,beta-unsaturated compounds are substrates provoked speculation that the OYE family might be involved in reductive degradation of xenobiotics or lipid peroxidation products. Here, for the first time, we demonstrate on the protein level that whereas YqjM shows a basal level of expression in B. subtilis, the addition of the toxic xenobiotic, trinitrotoluene, leads to a rapid induction of the protein in vivo denoting a role in detoxification. Moreover, we show that YqjM is rapidly induced in response to oxidative stress as exerted by hydrogen peroxide, demonstrating a potential physiological role for this enigmatic class of proteins.  相似文献   

14.
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides, an essential step in DNA biosynthesis and repair. Here we present the crystal structure of class II (coenzyme B12-dependent) ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii in the apo enzyme form and in complex with the B12 analog adeninylpentylcobalamin at 1.75 and 2.0 A resolution, respectively. This monomeric, allosterically regulated class II RNR retains all the key structural features associated with the catalytic and regulatory machinery of oligomeric RNRs. Surprisingly, the dimer interface responsible for effector binding in class I RNR is preserved through a single 130-residue insertion in the class II structure. Thus, L. leichmannii RNR is a paradigm for the simplest structural entity capable of ribonucleotide reduction, a reaction linking the RNA and DNA worlds.  相似文献   

15.
Colonization of the gastric mucosa with the spiral-shaped Gram-negative proteobacterium Helicobacter pylori is probably the most common chronic infection in humans. The genomes of H. pylori strains J99 and 26695 have been completely sequenced. Functional and three-dimensional structural information is available for less than one third of all open reading frames. We investigated the function and three-dimensional structure of a member from a family of cysteine-rich hypothetical proteins that are unique to H. pylori and Campylobacter jejuni. The structure of H. pylori cysteine-rich protein (Hcp) B possesses a modular architecture consisting of four alpha/alpha-motifs that are cross-linked by disulfide bridges. The Hcp repeat is similar to the tetratricopeptide repeat, which is frequently found in protein/protein interactions. In contrast to the tetratricopeptide repeat, the Hcp repeat is 36 amino acids long. HcpB is capable of binding and hydrolyzing 6-amino penicillinic acid and 7-amino cephalosporanic acid derivatives. The HcpB fold is distinct from the fold of any known penicillin-binding protein, indicating that the Hcp proteins comprise a new family of penicillin-binding proteins. The putative penicillin binding site is located in an amphipathic groove on the concave side of the molecule.  相似文献   

16.
Maspin is a serpin that acts as a tumor suppressor in a range of human cancers, including tumors of the breast and lung. Maspin is crucial for development, because homozygous loss of the gene is lethal; however, the precise physiological role of the molecule is unclear. To gain insight into the function of human maspin, we have determined its crystal structure in two similar, but non-isomorphous crystal forms, to 2.1- and 2.8-A resolution, respectively. The structure reveals that maspin adopts the native serpin fold in which the reactive center loop is expelled fully from the A beta-sheet, makes minimal contacts with the core of the molecule, and exhibits a high degree of flexibility. A buried salt bridge unique to maspin orthologues causes an unusual bulge in the region around the D and E alpha-helices, an area of the molecule demonstrated in other serpins to be important for cofactor recognition. Strikingly, the structural data reveal that maspin is able to undergo conformational change in and around the G alpha-helix, switching between an open and a closed form. This change dictates the electrostatic character of a putative cofactor binding surface and highlights this region as a likely determinant of maspin function. The high resolution crystal structure of maspin provides a detailed molecular framework to elucidate the mechanism of function of this important tumor suppressor.  相似文献   

17.
Modification of GTPases with isoprenoid molecules derived from geranylgeranyl pyrophosphate or farnesyl pyrophosphate is an essential requisite for cellular signaling pathways. The synthesis of these isoprenoids proceeds in mammals through the mevalonate pathway, and the final steps in the synthesis are catalyzed by the related enzymes farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase. Both enzymes play crucial roles in cell survival, and inhibition of farnesyl pyrophosphate synthase by nitrogen-containing bisphosphonates is an established concept in the treatment of bone disorders such as osteoporosis or certain forms of cancer in bone. Here we report the crystal structure of human geranylgeranyl pyrophosphate synthase, the first mammalian ortholog to have its x-ray structure determined. It reveals that three dimers join together to form a propeller-bladed hexameric molecule with a mass of approximately 200 kDa. Structure-based sequence alignments predict this quaternary structure to be restricted to mammalian and insect orthologs, whereas fungal, bacterial, archaeal, and plant forms exhibit the dimeric organization also observed in farnesyl pyrophosphate synthase. Geranylgeranyl pyrophosphate derived from heterologous bacterial expression is tightly bound in a cavity distinct from the chain elongation site described for farnesyl pyrophosphate synthase. The structure most likely represents an inhibitory complex, which is further corroborated by steady-state kinetics, suggesting a possible feedback mechanism for regulating enzyme activity. Structural comparisons between members of this enzyme class give deeper insights into conserved features important for catalysis.  相似文献   

18.
The high number of quaternary structures observed for lectins highlights the important role of these oligomeric assemblies during carbohydrate recognition events. Although a large diversity in the mode of association of lectin subunits is frequently observed, the oligomeric assemblies of plant lectins display small variations within a single family. The crystal structure of the mannose-binding jacalin-related lectin from Calystegia sepium (Calsepa) has been determined at 1.37-A resolution. Calsepa exhibits the same beta-prism fold as identified previously for other members of the family, but the shape and the hydrophobic character of its carbohydrate-binding site is unlike that of other members, consistent with surface plasmon resonance analysis showing a preference for methylated sugars. Calsepa reveals a novel dimeric assembly markedly dissimilar to those described earlier for Heltuba and jacalin but mimics the canonical 12-stranded beta-sandwich dimer found in legume lectins. The present structure exemplifies the adaptability of the beta-prism building block in the evolution of plant lectins and highlights the biological role of these quaternary structures for carbohydrate recognition.  相似文献   

19.
Pasteurellosis caused by the Gram-negative pathogen Pasteurella haemolytica is a serious disease leading to death in cattle. To scavenge growth-limiting iron from the host, the pathogen utilizes the periplasmic ferric ion-binding protein A (PhFbpA) as a component of an ATP-binding cassette transport pathway. We report the 1.2-A structure of the iron-free (apo) form of PhFbpA, which is a member of the transferrin structural superfamily. The protein structure adopts a closed conformation, allowing us to reliably assign putative iron-coordinating residues. Based on our analysis, PhFbpA utilizes a unique constellation of binding site residues and anions to octahedrally coordinate an iron atom. A surprising finding in the structure is the presence of two formate anions on opposite sides of the iron-binding pocket. The formate ions tether the N- and C-terminal domains of the protein and stabilize the closed structure, also providing clues as to probable candidates for synergistic anions in the iron-loaded state. PhFbpA represents a new class of bacterial iron-binding proteins.  相似文献   

20.
The crystal structure of Delta3-Delta2-enoyl-CoA isomerase from human mitochondria (hmEci), complexed with the substrate analogue octanoyl-CoA, has been refined at 1.3 A resolution. This enzyme takes part in the beta-oxidation of unsaturated fatty acids by converting both cis-3 and trans-3-enoyl-CoA esters (with variable length of the acyl group) to trans-2-enoyl-CoA. hmEci belongs to the hydratase/isomerase (crotonase) superfamily. Most of the enzymes belonging to this superfamily are hexamers, but hmEci is shown to be a trimer. The mode of binding of the ligand, octanoyl-CoA, shows that the omega-end of the acyl group binds in a hydrophobic tunnel formed by residues of the loop preceding helix H4 as well as by side-chains of the kinked helix H9. From the structure of the complex it can be seen that Glu136 is the only catalytic residue. The importance of Glu136 for catalysis is confirmed by mutagenesis studies. A cavity analysis shows the presence of two large, adjacent empty hydrophobic cavities near the active site, which are shaped by side-chains of helices H1, H2, H3 and H4. The structure comparison of hmEci with structures of other superfamily members, in particular of rat mitochondrial hydratase (crotonase) and yeast peroxisomal enoyl-CoA isomerase, highlights the variable mode of binding of the fatty acid moiety in this superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号