首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
N,N-Dimethylation of the H-Dmt-Tic-NH-CH(R)-R′ series of compounds produced no significant affect on the high δ-opioid receptor affinity (Ki=0.035–0.454 nM), but dramatically decreased that for the μ-opioid receptor. The effect of N-methylation was independent of the length of the linker (R); however, the bioactivities were affected by the chemical composition of the third aromatic group (R′): phenyl (Ph) (5′–8′) elicited a greater reduction in μ-affinity (40–70-fold) compared to analogues containing 1H-benzimidazole-2-yl (Bid) (9-fold). The major consequences of N,N-dimethylation on in vitro bioactivity were: (i) a loss of δ-agonism coupled with the appearance of potent δ antagonism (4′–7′) (pA2=8.14–9.47), while 1 exhibited only a 160-fold decreased δ agonism (1′) and the δ antagonism of 8 enhanced >10-fold (pA2=10.62, 8′); and (ii) a consistent loss of μ-affinity resulted in enhanced δ-opioid receptor selectivity. With the exception of compound 1′, the change in the hydrophobic environment at the N-terminus and formation of a tertiary amine by N,N-dimethylation in analogues of the Dmt-Tic pharmacophore produced potent δ-selective antagonists.  相似文献   

2.
3.
A series of 1,3,4-thiadiazole-containing hydroxamic acids, in accord with the common pharmacophore of histone deacetylase (HDAC) inhibitors (a Zn2+ binding moiety–a linker–a surface recognition motif), was identified as submicromolar HDAC inhibitors by our group. In this study, we continued our efforts to develop 1,3,4-thiadiazole bearing hydroxamate analogues by modifying the surface recognition motif. We found that 1,3,4-thiadiazoles having a heteroaromatic substituent showed better HDAC inhibitory activity in enzymatic assay and higher antiproliferative potency in cellular assay compared to SAHA.  相似文献   

4.
The design and synthesis of a series of analogues of sialyl Lewisx (1) which incorporate conformationally rigid tetralin and naphthalene ring systems (2–4) has led to novel compounds which have similar potency to 1 as inhibitors of cell adhesion.  相似文献   

5.
We report here the strategy used in our research group to find a new class of histone deacetylase (HDAC) inhibitors. A series of 5,11-dihydrodibenzo[b,e]azepine-6-ones alkylated on the amide nitrogen with an alkyl chain bearing an hydroxamic acids moiety at the end, has been designed (based upon the general motif for HDAC inhibitors), synthesized and tested. This allowed us to identify a new series of submicromolar HDAC inhibitors, which showed antiproliferative activity on HCT-116 colon carcinoma cells.  相似文献   

6.
We have screened our compound collection in an established cell based assay that measures the derepression of an epigenetically silenced transgene, the locus derepression assay. The screen led to the identification of 4-[4-(1-methylbenzimidazol-2-yl)piperazin-1-yl]sulfonylbenzenecarbohydroxamic acid (9b) as an active which was found to inhibit HDAC1. In initial structure activity relationships study, the 1-methylbenzimidazole ring was replaced by the isosteric heterocycles benzimidazole, benzoxazole, and benzothiazole and the position of the hydroxamic acid substituent on the phenyl ring was varied. Whereas compounds bearing a para substituted hydroxamic acid (9a-d) were active HDAC inhibitors, the meta substituted analogues (8a-d) were appreciably inactive. Compounds 9a-d selectively inhibited HDAC6 (IC50 = 0.1–1.0μM) over HDAC1 (IC50 = 0.9–6μM) and moreover, also selectively inhibited the growth of lung cancer cells vs. patient matched normal cells. The compounds induce a cell cycle arrest in the S-phase while induction of apoptosis is neglible as compared to controls. Molecular modeling studies uncovered that the MM-GBSA energy for interaction of 9a-d with HDAC6 was higher than for HDAC1 providing structural rationale for the HDAC6 selectivity.  相似文献   

7.
8.
Histone deacetylases (HDACs) are involved in post-translational modification and epi-genetic expression, and have been the intriguing targets for treatment of cancer. In previous study, we reported synthesis and the biological preliminary results of γ-lactam based HDAC inhibitors. Based on the previous results, smaller γ-lactam core HDAC inhibitors are more active than the corresponding series of larger δ-lactam based analogues and the hydrophobic and bulky cap groups are required for better potency which decreased microsomal stability. Thus, γ-lactam analogues with methoxy, trifluoromethyl groups of ortho-, meta-, para-positions of cap group were prepared and evaluated their biological potency. Among them, trifluoromethyl analogues, which have larger lipophilicity, showed better HDAC inhibitory activity than other analogues. In overall, lipophilicity leads to increase hydrophobic interaction between surface of HDAC active site and HDAC inhibitor, improves HDAC inhibitory activity.  相似文献   

9.
Histone modification, for example, by histone deacetylase (HDAC) and histone lysine methyltransferase (HMT), plays an important role in regulating gene expression. To obtain novel inhibitors as tools for investigating the physiological function of members of the HMT family, we designed and synthesized novel inhibitors, which are amine analogues of adenosylmethionine (AdoMet; the cofactor utilized in the methylation reaction) bearing various alkylamino groups coupled via an ethylene linker. The inhibitory activities of these compounds towards SET7/9, an HMT, were evaluated. It was found that introduction of an alkylamino group increased the inhibitory activity.  相似文献   

10.
In an effort to expand the spectrum of activity of the oxazolidinone class of antibacterial agents to include Gram-negative bacteria, a series of new carbon–carbon linked pyrazolylphenyl analogues has been prepared. The -N-substituted methyl pyrazole (10) in the C3-linked series exhibited very good Gram-positive activity with MICs ≤0.5–1 μg/mL and moderate Gram-negative activity with MICs=2–8 μg/mL against Haemophilus influenzae and Moraxella catarrhalis. This analogue was also found to have potent in vivo activity with an ED50=1.9 mg/kg. β-Substitution at the C3-linked pyrazole generally results in a loss of activity. The C4-linked pyrazoles are slightly more potent than their counterparts in the C3-linked series. Most of the analogues in the C4-linked series exhibited similar levels of activity in vitro, but lower levels of activity in vivo than 10. In addition, incorporation of a thioamide moiety in selected C4-linked pyrazole analogues results in an enhancement of in vitro activity leading to compounds several times more potent than eperezolid, linezolid and vancomycin. The thioamide of the N-cyanomethyl pyrazole analogue (34) exhibited an exceptional in vitro activity with MICs of ≤ 0.06–0.25 μg/mL against Gram-positive pathogens and with MICs of 1 μg/mL against fastidious Gram-negative pathogens.  相似文献   

11.
Chlamydocin-hydroxamic acid analogues were designed and synthesized as histone deacetylase (HDAC) inhibitors based on the structure and HDAC inhibitory activity of chlamydocin and trichostatin A. Chlamydocin is a cyclic tetrapeptide containing an epoxyketone moiety in the side chain that makes it an irreversible inhibitor of HDAC. We replaced the epoxyketone moiety of chlamydocin with hydroxamic acid to design potent and reversible inhibitors of HDAC. In addition, a number of amino-cycloalkanecarboxylic acids (Acc) are introduced instead of the simple amino-isobutric acid (Aib) for a variety of the series of chlamydocin analogues. The compounds synthesized were tested for HDAC inhibitory activity and the results showed that many of them are potent inhibitors of HDAC. The replacement of Aib residue of chlamydocin with an aromatic amino acid enhances the in vivo and in vitro inhibitory activity. We have carried out circular dichroism and molecular modeling studies on chlamydocin-hydroxamic acid analogue and compared it with the solution structure of chlamydocin.  相似文献   

12.
Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. Small molecule HDAC inhibitors identified so far fall in to three distinct structural motifs: the zinc-binding group (ZBG), a hydrophobic linker, and a recognition cap group. Here we report the suitability of a 1,2,3-triazole ring as a surface recognition cap group-linking moiety in suberoylanilide hydroxamic acid-like (SAHA-like) HDAC inhibitors. Using “click” chemistry (Huisgen cycloaddition reaction), several triazole-linked SAHA-like hydroxamates were synthesized. Structure–activity relationship revealed that the position of the triazole moiety as well as the identity of the cap group markedly affected the in vitro HDAC inhibition and cell growth inhibitory activities of this class of compounds.  相似文献   

13.
(1S,2R)-1-Phenyl-2-[(S)-1-aminopropyl]-N,N-diethylcyclopropanecarboxamide (PPDC, 4a), which is a conformationally restricted analogue of antidepressant milnacipran [(±)-1], is a new class of potent noncompetitive NMDA receptor antagonists. A series of PPDC analogues modified at the 1-phenyl moiety, that is, the analogue 6 lacking 1-phenyl group, the 1-(fluorophenyl) analogues 4b,c,d, the 1-(methylphenyl) analogues 4e–g and the 1-(naphthyl) analogues 4h,i were synthesized. Analogue 6, lacking the 1-phenyl group, was completely inactive showing that the aromatic moiety is essential for the NMDA receptor binding. Among the analogues synthesized, the 1-o-fluorophenyl and 1-m-fluorophenyl analogues 4b and 4c showed potent affinities for the NMDA receptor [IC50=0.16±0.001 μM (4b), 0.15±0.02 μM (4c)], which were improved to some extent compared to those of the parent compound PPDC (IC50=0.20±0.02 μM). On the other hand, compounds 4b and 4c showed none of the 5-HT-uptake inhibitory effect, while PPDC turned out to be a weak 5-HT-uptake inhibitor.  相似文献   

14.
2-(Acyloxy)ethylphosphonate analogues of geranyl, farnesyl, and geranylgeranyl pyrophosphate have been prepared. Horner–Wadsworth–Emmons condensation of different terpene aldehydes with an unsymmetrical bisphosphonate was the key step in syntheses of the phosphonates bearing ,β-unsaturated acyloxy groups. After preparation of the respective phosphonic acids through reaction with TMSBr, both acids and esters were tested for their effects on DNA synthesis in human-derived myeloid and lymphoid leukemia cell lines. The phosphonate esters varied substantially in their ability to impair proliferation of the different cell lines, but testing against one possible target, farnesyl protein transferase (FPTase), revealed little impact at concentrations ranging up to 10 μM. Because the corresponding 2,3-dihydro compounds showed similar biological activity, conjugate addition would not appear to be involved in the toxicity.  相似文献   

15.
Data from clinical studies indicate that inhibitors of Class I and Class II histone deacetylase (HDAC) enzymes show great promise for the treatment of cancer. Zolinza (SAHA, Zolinza) was recently approved by the FDA for the treatment of the cutaneous manifestations of cutaneous T-cell lymphoma. As a part of our ongoing effort to identify novel small molecules to target these important enzymes, we have prepared two series of benzothiazole-containing analogues of SAHA. It was found that several compounds with 6C-bridge linking benzothiazole moiety and hydroxamic functional groups showed good inhibition against HDAC3 and 4 at as low as 1 μg/ml and exhibited potent cytotoxicity against five cancer cell lines with average IC50 values of as low as 0.81 μg/ml, almost equipotent to SAHA.  相似文献   

16.
In recent years, inhibition of HDAC6 became a promising therapeutic strategy for the treatment of cancer and HDAC6 inhibitors were considered to be potent anti-cancer agents. In this work, celecoxib showed moderate degree of HDAC6 inhibition activity and selectivity in preliminary enzyme inhibition activity assay. A series of hydroxamic acid derivatives bearing phenylpyrazol moiety were designed and synthesized as HDAC6 inhibitors. Most compounds showed potent HDAC6 inhibition activity. 11i was the most selective compound against HDAC6 with IC50 values of 0.020 µM and selective factor of 101.1. Structure-activity relationship analysis indicated that locating the linker group at 1′ of pyrazol gave the most selectivity. The most compounds 11i (GI50 = 3.63 μM) exhibited 6-fold more potent than vorinostat in HepG2 cells. Considering of the high selectivity against HDAC6 and anti-proliferation activity, such compounds have potential to be developed as anti-cancer agents.  相似文献   

17.
Histone deacetylase 6 (HDAC6) is an established drug target for cancer treatment. Inhibitors of HDAC6 based on a hydroxamic acid zinc binding group (ZBG) are often associated with undesirable side effects. Herein, we describe the identification of HDAC6 inhibitors based on a completely new 3-hydroxy-isoxazole ZBG. A series of derivatives decorated with different aromatic or heteroaromatic linkers, and various cap groups were synthesised and biologically tested. In vitro tests demonstrated that some compounds are able to inhibit HDAC6 with good potency, the best candidate reaching an IC50 of 700 nM. Such good potency obtained with a completely new ZBG make these compounds particularly attractive. The effect of the most active inhibitors on the acetylation levels of histone H3 and α- tubulin and their anti-proliferative activity of DU145 cells were also investigated. Docking studies were performed to evaluate the binding mode of these new derivatives and discuss structure-activity relationships.  相似文献   

18.
In a previous study we have investigated the monoamine oxidase (MAO) inhibitory properties of a series of 8-sulfanylcaffeine analogues. Among the compounds studied, 8-[(phenylethyl)sulfanyl]caffeine (IC50 = 0.223 μM) was found to be a particularly potent inhibitor of the type B MAO isoform. In an attempt to discover potent MAO inhibitors and to further examine the structure–activity relationships (SAR) of MAO inhibition by 8-sulfanylcaffeine analogues, in the present study a series of 8-[(phenylethyl)sulfanyl]caffeine analogues were synthesized and evaluated as inhibitors of human MAO-A and -B. The results document that substitution on C3 and C4 of the phenyl ring with alkyl groups and halogens yields 8-[(phenylethyl)sulfanyl]caffeine analogues which are potent and selective MAO-B inhibitors with IC50 values ranging from 0.017 to 0.125 μM. The MAO inhibitory properties of a series of 8-sulfinylcaffeine analogues were also examined. The results show that, compared to the corresponding 8-sulfanylcaffeine analogues, the 8-sulfinylcaffeins are weaker MAO-B inhibitors. Both the 8-sulfanylcaffeine and 8-sulfinylcaffeine analogues were found to be weak MAO-A inhibitors. This study also reports the MAO inhibition properties of selected 8-[(phenylpropyl)sulfanyl]caffeine analogues.  相似文献   

19.
Multitarget inhibitors design has generated great interest in cancer treatment. Based on the synergistic effects of topoisomerase and histone deacetylase inhibitors, we designed and synthesized a new series of acridine hydroxamic acid derivatives as potential novel dual Topo and HDAC inhibitors. MTT assays indicated that all the hybrid compounds displayed good antiproliferative activities with IC50 values in low micromolar range, among which compound 8c displayed potent activity against U937 (IC50?=?0.90?μM). In addition, compound 8c also displayed the best HDAC inhibitory activity, which was several times more potent than HDAC inhibitor SAHA. Subsequent studies indicated that all the compounds displayed Topo II inhibition activity at 50?μM. Moreover, compound 8c could interact with DNA and induce U937 apoptosis. This study provides a suite of compounds for further exploration of dual Topo and HDAC inhibitors, and compound 8c can be a new dual Topo and HDAC inhibitory anticancer agent.  相似文献   

20.
To probe the importance of a proposed β-turn within residues S9-R12 of PACAP for recognition by VIP/PACAP receptors, compounds 1 and 2, two conformationally restricted analogues of PACAP27 incorporating respectively (S)- or (R)-IBTM as type II or II′ β-turn dipeptide mimetic at the Y10-S11 position, were synthesized. According to 1H NMR conformational analyses in aqueous solution and 30% TFE, both PACAP27 and the [S-IBTM10,11]PACAP27 analogue 1 adopt similar ordered structures. PACAP27 shows an N-terminal disordered region (residues H1-F6) and an -helical conformation within segment T7–L27. For residues S9–R12, our data seem more compatible with a segment of the -helix than with the β-turn previously proposed for this fragment. In compound 1 the -helix, also spanning T7–L27 residues, appears slightly distorted at the N-terminus relative to the native peptide. Although this distortion could lead to the marked decrease in binding affinity of this compound at the VIP/PACAP receptors, the lack of the Y10 side chain in analogues 1 and 2 could also significantly affect the binding of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号